

## 1) Définition:

Soit f est une fonction définie sur un intervalle I.

Une primitive de f sur I est une fonction F dérivable sur I et telle que:

$$\forall x \in I ; F'(x) = f(x)$$

## 2) Primitives de fonctions usuelles

On obtient des primitives de fonctions usuelles par lecture inverse du tableau des dérivées. Dans les tableaux suivants, k désigne un réel quelconque.

| Fonction f définie par                                             | Primitives F de $f$ définie par                      | sur I                                      |
|--------------------------------------------------------------------|------------------------------------------------------|--------------------------------------------|
| f(x) = c (où <i>c</i> est une constante)                           | F(x) = cx + k                                        | $I = \mathbb{R}$                           |
| f(x) = x                                                           | $F(x) = \frac{1}{2}x^2 + k$                          | $I=\mathbb{R}$                             |
| $f(x) = x^n$ $n \in \mathbb{N}^*$                                  | $F(x) = \frac{x^{n+1}}{n+1} + k$                     | $I = \mathbb{R}$                           |
| $f(x) = \frac{1}{x^2}$                                             | $F(x) = -\frac{1}{x} + k$                            | $I = ]-\infty;0[$ ou $I = ]0;+\infty[$     |
| $f(x) = \frac{1}{x^n}$ $(n \in \mathbb{N}^* \text{ et } n \neq 1)$ | $F(x) = \frac{-1}{n-1} \times \frac{1}{x^{n-1}} + k$ | $I = ]0 ; +\infty[$ ou $I = ]-\infty ; 0[$ |
| $f(x) = \frac{1}{\sqrt{x}}$                                        | $F(x) = 2\sqrt{x} + k$                               | $I = ]0$ ; $+\infty[$                      |
| $f(x) = \sqrt{x}$                                                  | $F(x) = \frac{2}{3}x\sqrt{x} + k$                    | $I = [0; +\infty[$                         |

Dans ce deuxième tableau, on note  $D_u$  le domaine de définition de la fonction u, et  $D_v$  celui de v.

| Fonction f                                               | Primitives de f                    | Définie sur                                                                                             |
|----------------------------------------------------------|------------------------------------|---------------------------------------------------------------------------------------------------------|
| $\alpha u'$ où $\alpha \in \mathbb{R}$                   | $\alpha u + k$                     | $D_u$                                                                                                   |
| u' + v'                                                  | u+v+k                              | $D_u \cap D_v$                                                                                          |
| $u' \times u^n$ où $n \in \mathbb{Z}^* \setminus \{-1\}$ | $\frac{1}{n+1} \times u^{n+1} + k$ | $D_u \operatorname{si} n > 0$ $D_u \setminus \{x \text{ tels que } u(x) = 0\} \operatorname{si} n < -1$ |
| $\frac{u'}{\sqrt{u}}$                                    | $2\sqrt{u}+k$                      | $D_u \setminus \{x \text{ tels que } u(x) \leq 0\}$                                                     |
| u'√u                                                     | $\frac{2}{3}u\sqrt{u}+k$           | $D_u \setminus \{x \text{ tels que } u(x) \leq 0\}$                                                     |
| $v' \times (u' \circ v)$                                 | $u \circ v + k$                    | $D_{u o v}$                                                                                             |

SAID CHERIF Année scolaire: 2018/2019 ItMAth