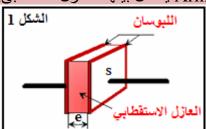
القطب R C Dipôle RC

I - المكثف: Condensateur

المكثف ثنائي قطب يتكون من موصلين متقابلين يسميان لبوسين Armatures يفصل بينهما عازل استقطاب



الشكل 2

 $q = q_A = -q_B$

1 ـ شحن وتفريغ المكثف:

* نشاط تجريبي 1: ننجز التركيب الممثل أسفله (الشكل 2).

 K_1 ونغلق التيار K_2 ونغلق المراء الشحن المراء المرا

بمتابعة مؤشر الفولطمتر ومؤشر الأمبير متر صف ما يحدث للتوتر بين مربطي المكثف و شدة التيار المار في الدارة - كيف تفسر شحن المكثف

 K_2 ب - التفريغ: نفتح قاطع التيار K_1 ثم نغلق

قارن منحى مرور التيار الكهربائي مع منحى مروره عند الشحن. كيف تفسر تفريغ المكثف.

ـ يشير الأمبير متر إلى مرور تيار كهربائى تتناقص شدته إلى أن ينعدم، $U_{AB}=E$ يتزايد التوتر U_{AB} إلى أن يصبح مساويا للقوة الكهر محركة للمولد

- تنتقل الإلكترونات من اللبوس A نحو اللبوس B وتجد أمامها عاز لا فتتركم عليه ،

 $\mathbf{q}_{\mathbf{B}}$ فيشحن اللبوس A بشحنة $\mathbf{q}_{\mathbf{A}}$ موجبة $\mathbf{q}_{\mathbf{A}}$ بينما يشحن اللبوس B فيشحن

 $q_A = -q_B$: بحیث ، $q_B \langle 0 \rangle$

- نسمي شحنة المكثف q ، الكمية الكهربائية التي يتوفر عليها أحد لبوسيه، حيث

. $U_{AB} = E$ يصبح (i=0) يصبح

> التفريغ: Décharge

ـ نلاحظ مرور تيار عكس المنحى الذي مر فيه أثناء الشحن، حيث الإلكترونات المتراكمة على اللبوس B تغادره نحو $U_{AB}=0$ عندما يصبح (i = 0) ينتهي التفريغ (se décharge) عندما يصبح عبر الأمبير متر نقول إن المكْثف ينفرغ

2 العلاقة بين الشحنة وشدة التيار i : نختار المنحى الموجب لشدة التيار بحيث يدخل من اللبوس A.

 $i\langle 0 | i \rangle$ إذا من التيار في المنحى المختار يحسب موجبا $i\langle 0 | i \rangle$ وإذا من عكس المنحى المختار يحسب سالبا

$$i(t) = \frac{dq}{dt} \quad \mathbf{q_A} \quad \mathbf{q_B}$$

$$i(t) = \frac{dq}{dt} \quad \mathbf{q_A} \quad \mathbf{q_B}$$

$$\frac{i}{0}$$
ا أي $\frac{dq_A}{dt}$ مند تزايد q_A

 $i\langle 0$ اي أي $\frac{dq_A}{dt}\langle 0$ q_A

شدة التيار الكهربائي هي صبيب الشحنات الكهربائية أي كمية الكهرباء dq التي تمر في وحدة الزمن:

$$q = q_A = -q_B i = \frac{dq}{dt}$$

 $dq = dq_A = -dq_B$

المكثف مُركبة تخزن كمية من الكهرباء وترجعها عند الحاجة.

(Capacité) سعة المكثف \mathbf{q} و التوتر بين مربطيه \mathbf{U} : سعة المكثف \mathbf{q}

* نشاط تجریبی 2

يشحن المكثف بو اسطة مولد مؤمثل للتيار (يعطى شدة ثابتة I_0).

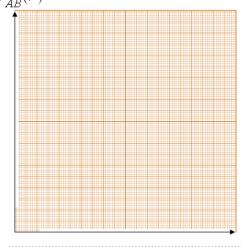
نضبط I_0 على القيمة 0.46 ثم نقيس التوتر U_{AB} بين مربطي المكثف كل خمس ثوان بفتح U_{AB} وتوقيف الميقت في

EL FAKIR & BOUADDI

التجريبي جانبه).	التركيب	(أنظر	الوقت	نفس
	التالية			

t(s)	0	5	10	15	20
$U_{AB}(V)$	0	1	2	3	4

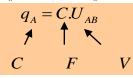
- $\frac{*$ استتمار $U_{AB}=f(t)$ باختیار سلم مناسب. 1 مثل المنحنی $U_{AB}=f(t)$ باختیار سلم مناسب. - 1
 - 2 حدد K المعامل الموجه للمستقيم المحصل عليه.
 - الزمن I_0 والزمن I_0 بدلالة شدة التيار I_0 والزمن I_0
 - . U_{AB} و K ، I_0 بدلالة q_A و q_A
 - $C = \frac{I_0}{K}$ احسب: $C = \frac{I_0}{K}$



أجزاء الفاراد: $1mF = 10^{-3}F$ (میلی فاراد)

 $\begin{array}{c|c}
A & C_1 & C_2 & B \\
\hline
U_{AD} & D & D_{DB} \\
\hline
U_{AB} & U_{DB}
\end{array}
\equiv
\begin{array}{c|c}
A & C & B \\
\hline
U_{AB} & D & D_{DB}
\end{array}$

 ${f C}$: سعة المكثف وحدتها في النظام العالمي الفاراد ${f Farad}$ ، رمز ها ${f C}$ وبالتالي :



(میکروفاراد) $1\mu F = 10^{-6} F$

(نانوفاراد) $1nF = 10^{-9}F$

(بیکوفار اد) $1pF = 10^{-12}F$

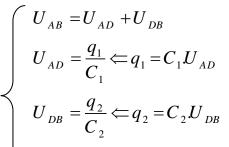
تتناسب شحنة $q_{
m A}$ للمكثف مع التوتر $U_{
m AB}$ بين مربطيه.

II - تجميع المكثفات. 1 - التركيب على التوالي:

حسب قانون إضافيات التوترات:

 $\frac{q}{C} = \frac{q_1}{C_1} + \frac{q_2}{C_2}$ $\frac{1}{C} = \frac{1}{C} + \frac{1}{C_0}$

 $C = \frac{C_1 \cdot C_2}{C_1 + C_2}$: سعة المكثف المكافئ. C



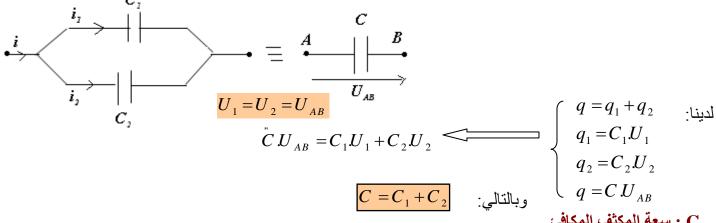
 $U_{AB} = \frac{q}{C} \Leftarrow q = C U_{AB}$

بحيث: C_n, \ldots, C_2, C_1 يكافئ مكثفا سعته C_n, \ldots, C_2, C_1 بحيث:

$$\frac{1}{C} = \frac{1}{C_1} + \frac{1}{C_2} + \dots + \frac{1}{C_n}$$

* فائدة التركيب على التوالي: يمكن هذا التركيب من الحصول على سعه فيمتها اصغر مع تطبيق توتر عال قد لا يتحمله كل مكثف إذا استعمل لو حده

2 ـ التركيب على التوازي:



C : سعة المكثف المكافئ

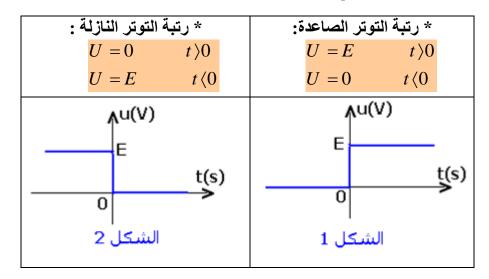
 \mathbb{C}_{n} بحيث: \mathbb{C}_{n} بحيث عامة : التركيب على التوازي لمكثفات سعاتها \mathbb{C}_{n} بحيث \mathbb{C}_{n} بحيث بصفة عامة : التركيب على التوازي لمكثفات سعاتها \mathbb{C}_{n}

$$C = C_1 + C_2 + \dots + C_n$$

* فائدة التركيب على التوازى: يستعمل هذا التركيب لتضخيم السعة وتخزين شحنة كبيرة باستعمال مكثفات سعاتها صغيرة.

III ـ استجابة ثنائي قطب RC لرتبة توتر: Echelon de tension

- \mathbf{R} هو تجميع على التوالي لموصل أومي مقاومته \mathbf{R} ومكثف سعته \mathbf{R}
 - ـ رتبة توتر هي إشارة كهر بائية تعرف كالتالي:

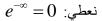


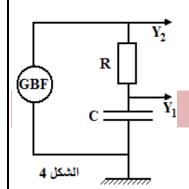
1 - الدراسة التجريبية.

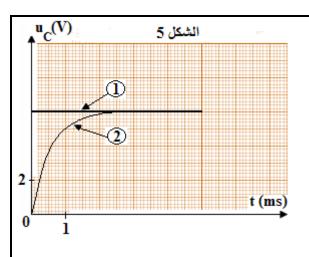
1 - 1 - نشاط تجريبي: شحن مكثف:

- (الشكل 4) ، $C = 0.4 \mu F$ و $R = 1250 \Omega$ بعد تغريغ المكثف، ننجز التركيب الكهربائي جانبه حيث $R = 1250 \Omega$
 - $\epsilon = 200$ و تر دده E = 6V و توتر مربعي توتره القصوي E = 6V و تردده نضبط مولد
 - نغلق قاطع التيار K في الموضع 1 ونعاين بواسطة كاشف التذبذب التوتر $u_{c}(t)$ بين مربطى المكثف بدلالة الزمن
 - Y_2 وما هو المنحنى الذي نشاهده على المدخل Y_1 وما هو المنحنى الذي نشاهده على المدخل و Y_2 ي نعتبر حالة توتر ذي رتبة صاعدة. يبرز منحنى تغيرات $\mathrm{u}_{\mathrm{C}}(t)$ وجود نظامين: 2
 - ❖ نظام انتقالى: يتغير خلاله التوتر (u_C(t).
 - نظام دائم: يصل خلاله التوتر إلى قيمة حدية ثابتة.
 - أ ـ عين $\operatorname{uc}(0)$ و $\operatorname{uc}(\infty)$ عندما تؤول t إلى ما لا نهاية.

 $u_{C}(t)=k.(1-e^{- au})$ بدلالة الزمن، بالدالة $u_{C}(t)=u_{C}(t)$ حيث k و τ ثابتتان، حدد الثابتة k ماذا تمثل؟







 $[C] = \frac{[I][t]}{[II]}$ وبالتالي:

au = RC : تسمى au ثابتة الزمن لثنائي القطب RC ، وتبين الدر اسة النظرية أن auباستعمال معادلة الأبعاد، بين أن au عبارة عن زمن.

 $u_{\rm C}(t)$. نعتبر الدالة الممثلة للمنحنى $u_{\rm C}(t)$

أ ـ عبر عن $u_{C}(t=\tau)$ بدلالة E التي تم التعرف عليها في السؤال (2 ـ ب).

ب ـ استنتج مبيانيا قيمة τ.

 ϵ - يمكن أن نحدد au بطريقة مبيانية ثانية حيث تمثل أفصول نقطة تقاطع المماس لمنحنى $\mathbf{u}_{\mathrm{C}}(t)$ عند $\mathbf{u}_{\mathrm{C}}(t)$ مع المنحنى $\mathbf{u}_{\mathrm{C}}(t)$. حدد

الأجوبة:

1 - المنحنى الذي نشاهده على المدخل ٢١ هو رقم 2 ، المنحنى الذي نشاهذه على المدخل Y_2 هو رقم 1.

 $u_{\rm C}(\infty) = E$ $u_{\rm C}(0) = 0$ $-\frac{1}{2}$

ين
$$K=E$$
 القوة الكهر محركة للمنبع. $\Leftarrow \begin{cases} u_C(\infty)=k.(1-e^{-\infty}) \\ =E \end{cases}$

و _ معادلة الأبعاد $C = \frac{[Q]}{[U]}$ ياستعمال معادلة الأبعاد بين أن للثابتة τ بُعد زمني. لدينا $C = \frac{q}{U}$: لدينا

$$[R].[C] = \frac{[I].[t]}{[U]} \times \frac{[U]}{[I]} = [t]$$
 إذن: $[R] = \frac{[U]}{[I]}$

إذن للمقدار $\tau = RC$ بُعد زمني، نسمي τ ثابتة الزمن لثنائي القطب RC ونعبر عنه بالثانية (s)

 $u_{\rm C}(t=\tau)$ عبير $u_{\rm C}(t=\tau)$

$$u_C(t=\tau) = E.(1 - e^{-\frac{\tau}{\tau}})$$

= $E.(1 - e^{-1})$
= $0.63E$

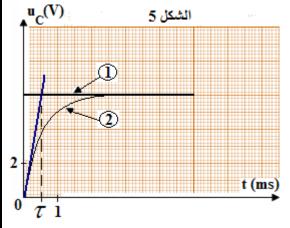
au - بستنتج مبیانیا قیمة au:

au الأفصول الذي يوافق الأرتوب $0,63.\mathrm{E}$. ت ع : au

 $RC = 1250 \times 0.4.10^{-6} = 0.5.10^{-3} \text{ s} = 0.5 \text{ms}$ - τ - 4

4 ـ د ـ تحدید ثابتة الز من مبیانیا:

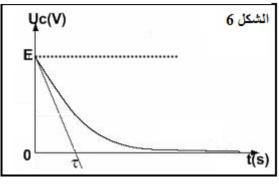
 $\mathbf{U}_{\mathbf{C}} = \mathbf{E}$ المقارب $\mathbf{U}_{\mathbf{C}} = \mathbf{f}(\mathbf{t})$ عند اللحظة $\mathbf{U}_{\mathbf{C}} = \mathbf{f}(\mathbf{t})$ في اللحظة au= au.



2 - 1 - تفريغ مكثف: نؤرجح قاطع التيار عند الموضع 2 .

يفرغ المكثف في المقاومة \tilde{R} ويتناقص التوتر U_{C} بين مربطيه.

تحديد ثابتة الزمن مبيانيا: $U_{\rm C} = f(t)$ المماس للمنحنى



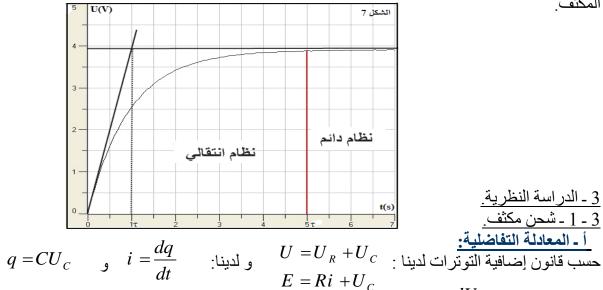
2 ـ النظامان الإنتقالي والدائم.

أ ـ نظام انتقالي: Régime transitoire

 $t\langle 5 au$ يتزايد أو يتناقص خلاله التوتر $U_{
m C}$ ونحصل عليه عندما تكون

ب ـ النظام الدائم: Régime permanent

نحصل عليه عندما يكون t > 5 au ويبقى خلاله التوتر U_C ثابتا U_C ثابتا U_C عند شحن المكثف t > 5 au



$$q = CU_C$$
 $i = \frac{dq}{dt}$

$$U=U_{R}+U_{C}$$
و لدينا: $E=Ri+U_{C}$

$$\frac{dU_C}{dt} + \frac{U_C}{RC} = \frac{E}{RC}$$
 تكتب المعادلة التفاضلية:

$$i = C \frac{dU_C}{dt}$$
 : يعني

$$RC\frac{dU_C}{dt} + U_C = E$$

 $\frac{dq}{dt} + \frac{q}{RC} = \frac{E}{R}$: q المعادلة التفاضلية التي تحققها الشحنة $U_C = \frac{q}{C}$

 $U_{C}=Ae^{-\alpha t}+B$ يكتب حل المعادلة التفاضلية: يكتب حل المعادلة التفاضلية: $\Omega_{C}=Ae^{-\alpha t}+B$ و Ω ثوابت.

$$U_C = Ae^{-ct} + B$$

 $-\alpha A e^{-\alpha t} + \frac{A e^{-\alpha t} + B}{RC} = \frac{E}{RC}$: نعوض $\frac{dU_C}{dt} = -\alpha A e^{-\alpha t}$: من المعادلة التفاضلية:

$$Ae^{-\alpha t}\left(\frac{1}{RC} - \alpha\right) = \frac{E - B}{RC}$$

 $\frac{1}{RC}-lpha=0$ و منه: $\frac{E-B}{RC}=0$ و منه: $\frac{E-B}{RC}=0$

❖ تحدید A باستعمال الشروط البدئیة:

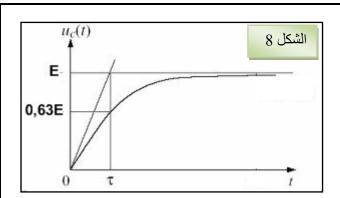
عند اللحظة t=0 فإن $U_{\rm C}=0$ (لم يكن المكثف مشحونا).

A=-B=-E يعنى A+B=0 على: A+B=0

$$au = RC$$
 نضع $au = R$ نضع $au_C = E\left(1 - e^{-\frac{t}{\tau}}\right)$ تعبیر التوتر بین مربطي مكثف:

$$U_{C}=-Ee^{-rac{t}{RC}}+E$$
 إذن: $U_{C}=E\left(1-e^{-rac{t}{RC}}
ight)$

ملحوظه: $q = CE\left(1-e^{-\frac{t}{\tau}}\right)$ ومنه: $q = CE\left(1-e^{-\frac{t}{\tau}}\right)$ ومنه: $q = CE\left(1-e^{-\frac{t}{\tau}}\right)$



$$i = \frac{E}{R}e^{-\frac{t}{\tau}}$$
 :

 $i = \frac{E}{R}e^{-\frac{t}{\tau}}$ ومنه: $i = \frac{dq}{dt}$: أمدة التيار

ـ الطريقة الحسابية لتحديد ثابتة الزمن τ:

: عند
$$t= au$$
 فإن الأرتوب
$$U_{C}=E\left(1-e^{-\frac{t}{ au}}\right)$$
 لدينا:
$$U_{C}\left(au\right)=E\left(1-e^{-1}\right)$$

$$U_{C}\left(au\right)=0,63E$$

$$\frac{dq}{dt} = C \frac{dU_{C}}{dt} \Leftarrow \begin{cases} i = \frac{dq}{dt} & \text{Lizio} = 0,63E \\ i = \frac{dq}{dt} & \text{Lizio} & \text{Lizio} = 0 \\ q = C U_{C} \end{cases}$$

$$\frac{dQ}{dt} + \frac{U_{C}}{dt} = 0 \qquad RC \cdot \frac{dU_{C}}{dt} + U_{C} = 0$$

$$\frac{dU_{C}}{dt} + \frac{U_{C}}{RC} = 0 \qquad RC \cdot \frac{dU_{C}}{dt} + U_{C} = 0$$

$$\frac{dU_C}{dt} + \frac{U_C}{RC} = 0$$

$$\frac{dU_C}{dt} + \frac{U_C}{RC} = 0$$
 ومنه $RC.\frac{dU_C}{dt} + U_C = 0$

 $\frac{dq}{dt} + \frac{q}{RC} = 0$: q نجد المعادلة التفاضلية التي تحققها الشحنة $U_c = \frac{q}{C}$ باعتبار

 $U_{C}=Ae^{-\alpha t}+B$ يكتب حل المعادلة التفاضلية: على الشكل التالي: $\mathbf{U}_{C}=Ae^{-\alpha t}+B$ و \mathbf{a} : \mathbf{a} و \mathbf{a} .

$$-\alpha A e^{-\alpha t} + \frac{A e^{-\alpha t} + B}{RC} = 0 \qquad \frac{dU_C}{dt} = -\alpha A e^{-\alpha t}$$

$$Ae^{-\alpha t}\left(\frac{1}{RC} - \alpha\right) = -\frac{B}{RC}$$

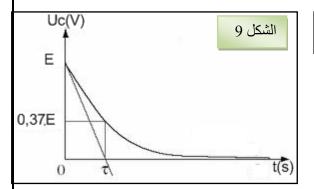
$$\alpha = \frac{1}{BC}$$
 و $B = 0$ فإن $A \neq 0$

 $U_{C}=Ee^{-rac{t}{RC}}$: الثوابت عند الشروط البدئية: $U_{C}=Ee^{-rac{t}{RC}}$: عند $U_{C}=Ee^{-rac{t}{RC}}$

$$U_{C}=Ee^{-rac{t}{ au}}$$
 وبالتالي فإن: $au=\mathrm{RC}$

$$U_{C}(\tau) = 0.37E$$
 عند $t = \tau$ غإن الأرتوب:

ملحوظة: $q = C.U_C$ ومنه: $q = C.Ee^{-\frac{t}{\tau}}$ ومنه: $q = C.Ee^{-\frac{t}{\tau}}$ $i = \frac{dq}{dt}$: i



$$i = -\frac{E}{R}e^{-\frac{t}{\tau}}$$
 eaise:

IVيمكن المكثف من تخزين طاقة كهربائية قصد استعمالها عند الحاجة. ومكن المكثف من تخزين طاقة كهربائية قصد استعمالها عند الحاجة. $E_e = \frac{1}{2}CU^2$

q = C.U : مع $E_e = \frac{1}{2} \frac{q^2}{C}$