
حركة دوران جسم صلب حول محور ثابت

يكون جسم صلب (غير قابل للتشويه) في دوران حول محور ثابت (Δ) إذا كانت جميع نقطه في حركة دائرية ممركزة على هذا المحور . كما أن لها في كل لحظة ، نفس السرعة الزاوية ω باستثناء النقط المنتمية للمحور (Δ) .

ا - مميزات حركة دوران جسم صلب حول محور ثابت .

يكون جُسَم صلَّب غير قابل للتشويه في دوران حول محور ثابت ، إذا كانت كل نقطة من نقطه في حركة دائرية ممركزة على هذا المحور . وينتمي مسارها إلى المستوى المتعامد مع محور الدوران .

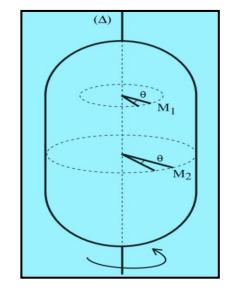
1) الأفصول الزاوي:

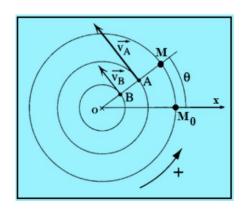
الأفصول الزاوي لنقطة متحركة M من جسم صلب في حركة دوران حول محور ثابت (Δ) هو الزاوية الموجهة $(\overline{Ox},\overline{OM})=\theta$. وحدة θ في النظام العالمي للوحدات هي الراديان رمزها θ .

2) الأفصول المنحني:

$$s(t) = M_0 M$$

وحدته هي المتر (m) . نعتبر M_0 أصل الأفاصيل المنحنية . يرتبط الافصول الزاوي θ و الأفصول المنحني $g(t) = r.\theta(t)$


(m) ، بوحدة المتر (m) ، (m) ، شعاع المسار الدائري ب (m) .

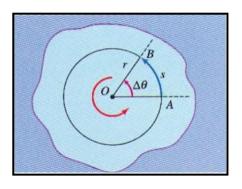

• ملحوظة : $_{\rm s}$ و $_{\rm g}$ مقدار ان جبريان

3) السرعة الزاوية اللحظية :

السرعة الزاوية اللحظية لنقطة متحركة $\,M\,$ من جسم صلب في دوران حول محور ثابت هي المشتقة بالنسبة للزمن للأفصول الزاوي لهذه النقطة : $\frac{d\theta}{dt}=\dot{\theta}=\omega$ وحدة $\,_{0}\,$ في النظام العالمي للوحدات هي الراديان على الثانية رمز ها $\,_{1}\,$ rad.s $\,_{2}\,$

*ملحوظة: جميع نقط جسم صلب في حركة دوران حول محور ثابت تدور بنفس السرعة الزاوية $_{\odot}$.

Page 1


4) السرعة الخطية:

تعرف السرعة الخطية (v(t في لحظة t لنقطة في حركة

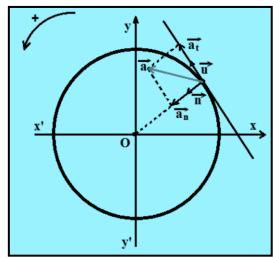
 $v(t) = \frac{ds(t)}{dt}$: دائریة مرکزها O بالعلاقة

 $v(t) = r.\dot{\theta}(t) = r.\omega(t)$: إذن $s(t) = r.\theta(t)$ أن $s(t) = r.\theta(t)$

*ملحوظة : أثناء دوران جسم صلب حول محور ثابت تكون لجميع نقطه في كل لحظة نفس السرعة الزاوية ، بينما تختلف سرعاتها الخطية.

5) التسارع الزاوي:

التسارع الزَّاوي لنَّقطَّة متحركة M من جسم صلب في حركة دوران حول محور ثابت هي ، في كل لحظة ، المشتقة بالنسبة للزمن


$$\ddot{\theta} = \frac{d\dot{\theta}}{dt} = \frac{d^2\theta}{dt^2}$$
 : للسرعة الزاوية لهذه النقطة

وحدة ق في النظام العالمي للوحدات هي الراديان . $rad.s^{-2}$ على مربع الثانية رمزها

في أساس فريني يكتب التسارع الخطي كالتالي : $\vec{a} = a_t \vec{u} + a_n \vec{n}$

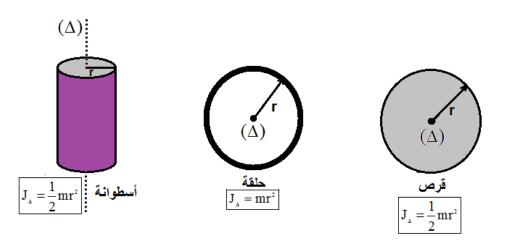
$$a_t = \frac{dv}{dt} = r.\ddot{\theta}$$
 : بحیث

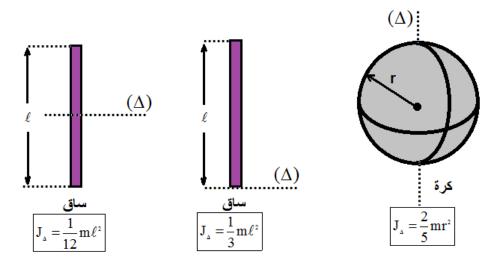
$$a_n = \frac{v^2}{r} = r.\dot{\theta}^2$$

| العلاقة الأساسية للديناميك (للتحريك):

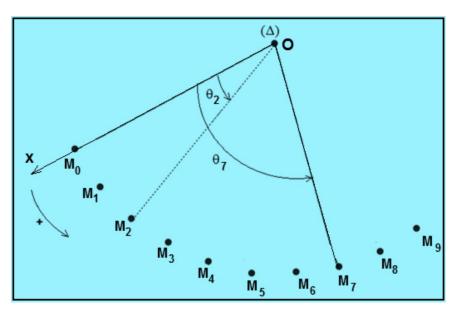
1) نص العلاقة:

في معلم مرتبط بالأرض ، و بالنسبة لمحور ثابت (۵) ، يساوي مجموع عزوم القوى المطبقة على جسم صلب في دوران حول محور ثابت (Δ) في كل لحظة ، جداء عزم القصور J_{Δ} و التسارع الزاوي $\ddot{\theta}$ لحركة الجسم في اللحظة المعنية :


$$\boxed{\sum M_{\scriptscriptstyle \Delta}(\overrightarrow{F}_{\scriptscriptstyle i}) = J_{\scriptscriptstyle \Delta}.\ddot{\theta}}$$


. (N.m) مجموع العزوم بالنسبة للمحور (Δ) للقوى المطبقة على الجسم بوحدة $\sum M_{\Delta}(\vec{F_i})$.

. $(kg.m^2)$ عزم قصور الجسم بالنسبة للمحور (Δ) بوحدة الجسم بالنسبة للمحور


. (rad.s $^{-2}$) التسار ع الزاوي لحركة الجسم بوحدة

2) صيغ عزوم القصور لأجسام متجانسة ذات أشكال بسيطة:

3 - كيفية تحديد السرعة الزاوية و التسارع الزاوي انطلاقا من تسجيل:

نعتبر تسجیل حرکة نقطة $_{M}$ من جسم یدور حول محور ثابت $_{(\Delta)}$. نختار المحور $_{(Ox)}$ محورا مرجعا للأفاصیل الزاویة $_{\theta_{i}}$ و منحی . (t=0) ولحظة تسجيل النقطة M_0 أصلا للتواريخ

نعين بالنسبة لكل موضع $_{\mathrm{M}_{\mathrm{i}}}$ المسجل عند اللحظة نعين بالنسبة لكل موضع

$$\begin{split} &\dot{\omega}_{i} = \dot{\theta}_{i} = \frac{\theta_{i+1} - \theta_{i-1}}{t_{i+1} - t_{i-1}} \\ & \ddot{\theta}_{i} = \frac{\dot{\theta}_{i+1} - \dot{\theta}_{i-1}}{t_{i+1} - t_{i-1}} \end{split}$$
ـ السرعة الزاوية:

ـ التسارع الزاوي :

الأستاذ: عزيز العطور Page 3