الجزء الثالث: منحى تطور مجموعة كيميائية الوحدة 6 3 س / 4 س

التطور التلقائي المجموعة اليميائية

L'évolution spontanée d'un système chimique

الثانية باكالوريا الكيمياء

$oldsymbol{O}_{\pi}$ ـ تذکیر : خارج التفاعل $oldsymbol{O}_{\pi}$:

خارج التفاعل Q_r مقدار يميز مجموعة كيميائية في حالة معينة وبالتالي تتبع تطور المجموعة .

<u>1-1- تعریف :</u>

نعتبر التفاعل المحدود المنمذج بالتفاعل التالي : $lpha \ A + eta \ B \Rightarrow \gamma \ C + \delta \ D$ و D و D و D و D و D و D معاملات تناسبية . نسمي خارج التفاعل Q_r في حالة معينة للمجموعة الكيميائية ، المقدار المعبر عنه بالعلاقة :

وهو مقدار بدون وحدة
$$oldsymbol{Q}_r = rac{[C]^{\gamma}.[D]^{\delta}}{[A]^{lpha}.[B]^{eta}}$$

حيث [X] يمثل العدد الذي يقيس التركيز المولي الفعلي له ، معبر عنه بالوحدة $mol. L^{-1}$. Q_r لا تتدخل في تعبير Q_r إلا التراكيز المولية الفعلية للأنواع المذابة فقط .

تبقى ، في حالة التوازن ، تراكيز مختلف الأنواع الكيميائية ثابتة ، حيث يأخذ خارج التفاعل Q_r قيمة غير

$$K=m{Q}_{r,cute{q}}=rac{[C]_{cute{q}}^{\gamma}.[D]_{cute{q}}^{\delta}}{[A]_{cute{q}}^{lpha}.[B]_{cute{q}}^{m{eta}}}$$
: متعلقة بالتركيب البدئي للمجموعة ، وهي ثابتة التوازن K

2-1- تحديد قيمة خارج التفاعل:

نعتبر محلولا مائيا حجمه V ، يحتوي على ثنائي اليود $I_{2(aq)}$ وأيونات اليودور $I_{(aq)}^{-}$ وأيونات ثيوكبريتات $S_2O_{3(aq)}^{2-}$ وأيونات رباعي ثيونات $S_2O_{3(aq)}^{2-}$.

 $2S_2{O_3}^{2-}_{(aq)} + I_{2(aq)} \leftrightarrows S_4{O_6}^{2-}_{(aq)} + 2I^-_{(aq)}$: هذه المجموعة مقر تفاعل أكسدة-اختزال ، معادلته

 $\left[S_2 O_3^{2-}
ight]_i = 0,30 \ mol. L^{-1}$ و $\left[I_2
ight]_i = 0,20 \ mol. L^{-1}$: نعطي

 $\left[S_4 O_6^{2-}\right]_i = 0,020 \ mol. \ L^{-1}$ 9 $\left[I^{-}\right]_i = 0,50 \ mol. \ L^{-1}$

أ- اعط تعبير خارج التفاعل المقرون بهذا التفاعل .

 $Q_r = \frac{\left[s_4 o_{6(aq)}^{2-}\right] \cdot \left[I_{(aq)}^{-}\right]^2}{\left[s_2 o_{3(aq)}^{2-}\right]^2 \left[I_{2(aq)}\right]}$

ب- احسب قيمته عند t=0 وعند اللحظة t حيث t=0 عند عند t=0

$I_{2(aq)} + 2 S_2 O_{3(aq)}^{2-} \Leftrightarrow 2I_{(aq)}^{-} + S_4 O_{6(aq)}^{2-}$			معادلة التفاعل		
كميات المادة بالمول			التقدم الحجمي	حالة المجموعة	
0,20	0,30	0,50	0,02	0	الحالة البدئية
$0,20-\frac{x}{V}$	$0.30 - \frac{2x}{V}$	$0,50+\frac{2x}{V}$	$0,02+\frac{x}{V}$	$\frac{\mathbf{x}(\mathbf{t})}{V}$	خلال التحول

ذ . هشام محجر

$$Q_{r,i} = rac{\left[s_4 o_{6(aq)}^{2-}
ight]_i \cdot \left[I_{(aq)}^-
ight]_i^2}{\left[s_2 o_{3(aq)}^{2-}
ight]_i^2 \left[I_{2(aq)}
ight]_i} = rac{0.02 imes (0.5)^2}{(0.3)^2 imes 0.2} = 0.28$$
لدينا

 $rac{x}{v} = \mathbf{0}, \mathbf{05} \ mol. \ L^{-1}$ اي $[I_2]_t = \mathbf{0}, \mathbf{20} - rac{x}{v} = \mathbf{0}, \mathbf{15} \ mol. \ L^{-1}$ عند اللحظة t ، لدينا

$$Q_{r,t} = \frac{\left[s_4 o_{6(aq)}^{2-}\right]_t \left[I_{(aq)}^{-}\right]_t^2}{\left[s_2 o_{3(aq)}^{2-}\right]_t^2 \left[I_{2(aq)}^{-}\right]_t} = \frac{\left(0.02 + \frac{x}{V}\right) \left(0.5 + \frac{2x}{V}\right)^2}{\left(0.3 - \frac{2x}{V}\right)^2 \left(0.2 - \frac{x}{V}\right)} = \frac{(0.02 + 0.05)(0.5 + 2 \times 0.05)^2}{(0.3 - 2 \times 0.05)^2 (0.2 - 0.05)} = 4, 2$$

 $\frac{2}{2}$ معيار التطور التلقائي لمجموعة ي معيار التطور التلقائي لمجموعة ي $C_{3}COOH_{(aq)}/CH_{3}COO_{(aq)}^{-}$ حسب تتفاعل المزدوجتان $C_{3}COOH_{(aq)}/CH_{3}COO_{(aq)}^{-}$ $HCOOH_{(aq)} + CH_3COO_{(aq)}^{-} \stackrel{(2)}{=} HCOO_{(aq)}^{-} + CH_3COOH_{(aq)}^{-}$: المعادلة التالية $K = \frac{K_{A_1}}{K_{A_2}} = 10$ هي 25° C عند المقرونة بهذه المعادلة عند

نمز S_1 في ثلاث كؤوس S_2 و محلول مصلول محلول مصلول معلول محلول محل $_{\cdot}$ $_{\cdot}$ $_{\cdot}$ ومحلول إيثانوات الصوديوم $_{\cdot}$ لها التركيز نفسه $_{\cdot}$ ومحلول ايثانوات الصوديوم $_{\cdot}$

C	В	A	الكأس
1,0	5,0	10,0	V_1
1,0	10,0	10,0	V_2
10,0	20,0	10,0	V_3
1,0	1,0	10,0	V_4
3,8	3,7	4,2	pHéq 🗐

$$Q_{r,i}$$
 واستنتج قيم $\frac{[CH_3CO_2^-]_i}{[CH_3CO_2H]_i}$ واستنتج قيم $\frac{[HCO_2^-]_i}{[HCO_2H]_i}$ واستنتج قيم $V=$ حجم الخليط ، بالنسبة لكل مجموعة ، هو $V_1+V_2+V_3+V_4$ الدينا $V_1+V_2+V_3+V_4$ و $V_1+V_2+V_3+V_4$

قيمة ثابتة الحمضية	تعبير ثابتة الحمضية	المزدوجة
$K_{A_1} = 1, 6. 10^{-4}$	$K_{A_1} = \frac{[H_3O^+]_{\acute{e}q} \cdot [HCO_2^-]_{\acute{e}q}}{[HCO_2H]_{\acute{e}q}}$	$HCO_2H_{/HCO_2^-}$
$K_{A_2} = 1, 6. 10^{-5}$	$K_{A_2} = \frac{[H_3 O^+]_{\text{\'e}q} \cdot [CH_3 CO_2^-]_{\text{\'e}q}}{[CH_3 CO_2 H]_{\text{\'e}q}}$	CH_3CO_2H $/CH_3CO_2^-$

نستنتج أن
$$m{Q}_{r,i} = rac{[CH_3CO_2H]_i[HCO_2^-]_i}{[CH_3CO_2^-]_i[HCO_2H]_i} = rac{V_3}{V_4} \cdot rac{V_2}{V_1}$$
 ندون النتائج في الجدول التالي

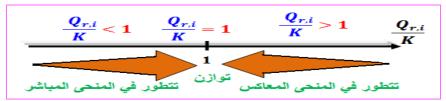
C	В	A	الكأس
0,1	0,05	1	$[CH_3CO_2^-]_i$
			$[CH_3CO_2H]_i$
1	2	1	$[HCO_2^-]_i$
			$[HCO_2H]_i$
10	40	1	$Q_{r,i}$

ج- عبر ، عند التوازن ، عن K_A عن $\frac{[HCO_2^-]_{\acute{e}q}}{[HCO_2H]_{\acute{e}q}}$ ي ج $\frac{[HCO_2^-]_{\acute{e}q}}{[HCO_2H]_{\acute{e}q}}$ و $\frac{[HCO_2^-]_{\acute{e}q}}{[HCO_2H]_{\acute{e}q}}$ عبر ، عند التوازن ، عن $\frac{[HCO_2^-]_{\acute{e}q}}{[HCO_2H]_{\acute{e}q}}$

. $oldsymbol{Q}_{r, ext{eq}}$ قيمتيهما . واستنتج قيمة

$$rac{[HCO_2^-]_{\acute{e}q}}{[HCO_2H]_{\acute{e}q}} = rac{K_{A_1}}{[H_3O^+]_{\acute{e}q}} = rac{K_{A_1}}{10^{-pH}}$$
 الدينا $K_{A_1} = rac{[H_3O^+]_{\acute{e}q}\cdot[HCO_2^-]_{\acute{e}q}}{[HCO_2H]_{\acute{e}q}}$ الدينا $K_{A_1} = rac{[H_3O^+]_{\acute{e}q}\cdot[HCO_2^-]_{\acute{e}q}}{[HCO_2H]_{\acute{e}q}}$ وبنفس الطريقة نجد $rac{[CH_3CO_2^-]_{\acute{e}q}}{[CH_3CO_2H]_{\acute{e}q}} = rac{K_{A_2}}{[H_3O^+]_{\acute{e}q}} = rac{K_{A_2}}{10^{-pH}}$

$$m{Q}_{r, cup{eq}} = rac{[CH_3CO_2H]_{cup{eq}}}{[CH_3CO_2^-]_{cup{eq}}} rac{[HCO_2^-]_{cup{eq}}}{[HCO_2H]_{cup{eq}}} = rac{K_{A_1}}{K_{A_2}} = m{K} = m{10}$$
 وبالتالي


ندون النتائج في الجدول التالي

C	B	A	الكأس
3,8	3,7	4,2	pH _{éq} →
0,1	0,08	0,25	$[CH_3CO_2^-]_{\acute{e}q}$
			$[CH_3CO_2H]_{\acute{e}q}$
1	0,8	2,5	$[HCO_2^-]_{\acute{e}q}$
			[HCO₂H] _{éq}
10	10	10	$oldsymbol{Q_{r, \mathrm{\acute{e}q}}}$

د. ماذا يمكن أن تستنتج من مقارنة قيمة $Q_{r,\acute{e}q}$ مع ثابتة التوازن X من توقع منحى التطور الناقائي للمجموعة في كل خليط . تمكن مقارنة قيمة $Q_{r,\acute{e}q}$ مع ثابتة التوازن X من توقع منحى التطور الثاقائي للمجموعة في كل خليط . $\frac{[CH_3CO_2H]_i}{[CH_3CO_2]_i} \frac{[HCO_2H]_{\acute{e}q}}{[HCO_2H]_{\acute{e}q}} \frac{[HCO_2H]_{\acute{e}q}}{[HCO_2H]_{\acute{e}q}} \frac{Q_{r,i} = 1 < K}{[HCO_2H]_i} \frac{[HCO_2]_{\acute{e}q}}{[HCO_2H]_{\acute{e}q}}$ المنحى $Q_{r,i} = 1 < K$ المنحى $Q_{r,i} = 1 < K$ أن النسبة $Q_{r,i} =$

لتوقع منحى التطور التلقاني لمجموعة كيميانية نستعمل كمعيار مقارنة خارج التفاعل $Q_{r,i}$ مع ثابتة التوازن K. تتطور مجموعة كيميانية وفق المنحى الذي يجعل خارج التفاعل $Q_{r,i}$ يؤول نحو ثابتة التوازن K. $Q_{r,i} = K$ يؤول نحو ثابتة التوازن $Q_{r,i} = K$. $Q_{r,i} = K$ يؤول نحو ثابتة التوازن $Q_{r,i} = K$. $Q_{r,i} = K$

ن . هشام محجر

 $\frac{3}{6}$ - تطبیق معیار التطور : $\frac{3}{1-3}$ $\frac{3}{1$ $extit{CH}_3 extit{COOH}_{(aq)} + extit{NH}_{3(aq)} \leftrightarrows extit{CH}_3 extit{COO}_{(aq)}^- + extit{NH}_{4(aq)}^+$ معادلته هي

قيمة ثابتة الحمضية	تعبير ثابتة الحمضية	المزدوجة
$K_{A_1} = 6, 3. 10^{-10}$	$K_{A_1} = \frac{[H_3O^+]_{\acute{eq}} \cdot [NH_3]_{\acute{eq}}}{[NH_4^+]_{\acute{eq}}}$	NH_4^+/NH_3
$K_{A_2} = 1, 6. 10^{-5}$	$K_{A_2} = \frac{[H_3 O^+]_{\text{\'e}q} \cdot [CH_3 CO_2^-]_{\text{\'e}q}}{[CH_3 CO_2 H]_{\text{\'e}q}}$	$CH_3CO_2H_{CH_3CO_2^-}$

$$K=rac{K_{A_2}}{K_{A_1}}=2,5.\,10^4$$
 هي $25^{\circ}C$ هي المعادلة بهذه المعادلة عند $K=rac{K_{A_2}}{K_{A_1}}=2,5.\,10^4$ هي أيا المعادلة بهذه المعادلة عند $K>10^4$

$$Q_{r,i} = rac{\left[ext{CH}_{3} ext{COO}_{(aq)}^{-}
ight]_{i} \cdot \left[ext{NH}_{4_{(aq)}}^{+}
ight]_{i}}{\left[ext{CH}_{3} ext{COOH}_{(aq)}
ight]_{i} \cdot \left[ext{NH}_{3_{(aq)}}
ight]_{i}} : section 1.5$$
 تعبير خارج التفاعل في الحالة البدئية هو

$CH_{3}COOH_{(aq)} + NH_{3(aq)} \stackrel{?}{=} CH_{3}COO_{(aq)}^{-} + NH_{4(aq)}^{+}$			
تتطور المجموعة تلقائيا في المنحى المباشر (1)	$ \angle [CH_3COOH] \\ \angle [NH_3] $	$Q_{r,i} < K$	
تتطور المجموعة تلقائيا في المنحى غير المباشر (2)		$Q_{r,i} > K$	
لا تتطور المجموعة (حالة التوازن)	تبقى التراكيز ثابتة	$Q_{r,i} = K$	

نعتبر تفاعل أكسدة-اختز ال بين المزدوجتين $Ee^{3+}_{(aq)}/Fe^{2+}_{(aq)}$ و و $Eu^{2+}_{(aq)}/Cu_{(s)}$ معادلته هي $2Fe_{(aq)}^{3+} + Cu_{(s)} \leftrightharpoons 2Fe_{(aq)}^{2+} + cu_{(aq)}^{2+}$

 $K = rac{[Fe^{2+}]_{
m \'eq}^2 \cdot [Cu^{2+}]_{
m \'eq}}{[Fe^{3+}]_{
m \'eq}^2}$ تعبير ثابتة التوازن المقرونة بهذه المعادلة

 $Q_{r,i} = rac{\left[Fe^{2+}\right]_{i}^{2} \cdot \left[Cu^{2+}\right]_{i}}{\left[Fe^{3+}\right]_{i}^{2}}$: تعبير خارج التفاعل في الحالة البدئية هو

يُمكِّنُ معيار التطور التلقائي لمجموعة من توقع منحى تطورها عندما تكون مقر تفاعلات أكسدة _ اختزال أو تفاعلات حمض _ قاعدة أو تفاعلات ترسيب