le courant électrique continu التيار الكهربائي المستمر

ا-مميزات التيار الكهربائي :

1-منحى التيار الكهربائي

يمر التيار الكهربائي في دارة كهربائية ، خارج المولد من قطبه الموجب (+) الى قطبه السالب (-) .

2-طبيعة التيار الكهربائي

التيار الكهربائي عبارة عن انتقال حملة الشحن الكهربائية وهي نوعان :

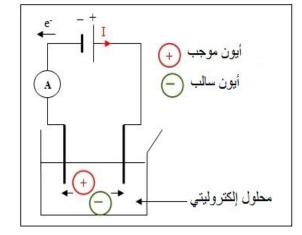
- · ألكترونات في موصل فلزي
 - أيونات في إلكتروليت

الكاتيونات تنتقل في منحى التيا الكهربائي والانيونات والإلكترونات تنتقل في المنحى المعاكس .

3-شدة التيار الكهربائي

3-1-كمية الكهرباء

: كمية الكهرباء Q التي تجتاز مقطعاً من الموصل وحدتها الكولوم (C) يعبرعنها


 $Q = |q| = N. \alpha. e$

 $e = 1,6.10^{-19} C$ الشحنة الإبتدائية : e

عدد الشحنات الكهربائية : lpha

aدد حملة الشحنات الكهربائية : N

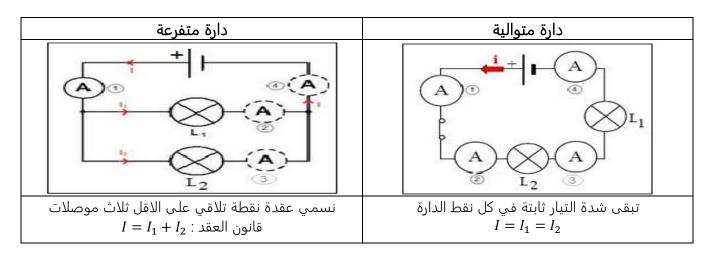
3-2-شدة التيار الكهربائي

 $I=rac{Q}{\Delta t}$ شدة التيار الكهربائي هي كمية الكهرباء التي تعبر مقطع دارة كهربائية خلال وحدة الزمن

3-3-قياس شدة التيار الكهربائي

يستعمل الأمبير متر لقياس شدة التيار الكهربائي حيث يركب على التوالي ويجتازه التيار من مربطه الاحمر (+) الى مربطه السالب (-) . عند كل قياس نبدأ بالعيار الاكبر لتفادي إتلاف الجهاز ، ثم العيار الذي يليه حتى الحصول على العيار الذي يمكن من قياس دقيق .

 $I=C.rac{n}{n_0}$: لتحديد شدة التيار الكهربائي نستعمل العلاقة


العيار المستعمل : C

n: عدد التدريجات التي تقف عندها الإبرة

عدد تدريجات الميناء : n_0

$rac{\Delta I}{I}$ دقة القياس	ΔI الإرتياب المطلق
$rac{\Delta I}{I} = rac{n_0.x}{100n}$ الإرتياب النسبي أو دقة القياس يعطى بنسبة مئوية	$\Delta I = C.rac{x}{100}$ حيث : C : العيار المستعمل نئة الجهاز يحددها الصانع : X

اا-خاصيات شدة التيار

