أمثلة لتأثيرات ميكانيكية Exemples d'actions mécaniques

1- تذكير بمفهوم القوة:

كما رأينا في الدرس السابق ، فإن كل جسم له كتلة يُؤثِرُ ويَتأثر من طرف بقية الأجسام . فنقول إنها تطبق تأثيرات ميكانيكية تسمى قوى ، ويسمى الجسم الذي يخضع لهذه القوى بالمجموعة المدروسة .

1-1- نشاط:

- 1- تأثير الأرض على الكرة أدى إلى سقوطها.
- 2 و 3- تأثير المغناطيس و المضرب على الكرة أدى إلى تغيير اتجاهها .
 - 4- تأثير الرياضي على الزانة أدى إلى تشويهها.
 - 5- تأثير الخيط على المصباح ساهم في توازنه .

: خلاصة -2-1

يمكن لتأثير ميكانيكي أن يحرك جسما أو يغير مساره فنقول أن مفعوله تحريكيا ، أو أن يساهم في توازنه أو تشويهه فنقول أن مفعوله سكونيا . نقرن بكل تأثير ميكانيكي مقدارا فيزيانيا نسميه متحمة الكرة .

2- تصنيف القوى:

لتصنيف القوى يجب تحديد المجموعة المدروسة.

نسمي المجموعة المدروسة الجسم الذي نختاره عن باقي الأجسام المحيطة به لجرد القوى المطبقة عليه . ويمكن لها أن تتكون من جسم واحد أو عدة أجسام .

2-1- القوى الداخلية و القوى الخارجية:

: 1-1-2 نشاط

صنف القوى المقرونة بالتأثيرات الميكانيكية السابقة في النشاط 1-1- إلى قوى داخلية وقوى خارجية.

الصنف	المجموعة المدروسة	الشكل	الصنف	المجموعة المدروسة	الشكل	الصنف	المجموعة المدروسة	الشكل
خارجية	{المصباح}		خارجية	{الزانة}		خارجية	{الكرة}	
داخلية	{المصباح+	5	داخلية	﴿الزانـة+	4	داخلية	(الكرة+	3
	الخيط}			الرياضي}			المضرب}	

: -2-1-2 خلاصة

القوة الخارجية هي القوة التي يُطبقها جسم لا ينتمي إلى المجموعة المدروسة على هذه المجموعة . المجموعة . القوة التي يُطبقها جسم ينتمي إلى المجموعة المدروسة على جزء من هذه المجموعة .

2-2 قوى تماس موزعة وقوى تماس مموضعة:

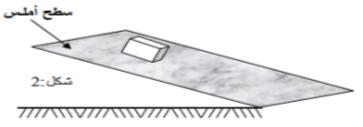
2-2-1- نشاط :

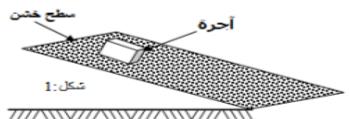
صنف القوى المقرونة بالتأثيرات الميكانيكية السابقة في النشاط 1-1- إلى : قوى التماس المموضعة أو الموزعة ـ قوى عن بعد .

5	4	3	2	1	الشكل
تماس مموضعة	تماس موزعة	تماس موزعة	عن بعد	عن بعد	صنف القوة

2-2-2 خلاصة :

قوى التماس الموزعة تظهر عندما يكون التماس بين الجسمين المُوثِر و المُؤثر عليه يتم على مساحة لا يمكن اعتبارها نقطية . قوى التماس المموضعة تظهر عندما يكون التماس بين الجسمين المُؤثِر و المُؤثر عليه يتم على مساحة صغيرة جدا يمكن اعتبارها نقطية .


2-2-3 أمثلة لبعض قوى التماس المموضعة :


\overrightarrow{T} توتر النابض	\overrightarrow{T} توتر الخيط	القوى	
نسمي توتر النابض القوة المطبقة من طرف نابض مطال أو مكبس على جسم مثبت بأحد طرفيه	نسمي توتر الخيط القوة التي يُؤثِر بها على جسم أخر	التعريف	
نقطة التماس بين الجسم و النابض	نقطة التماس بين الجسم و الخيط	نقطة التأثير	
المستقيم الذي يُجسده محور النابض	المستقيم الذي يُجسده الخيط	خط التأثير	
نحو موضع توازنه المستقر	نحو حامل الخيط	المنحى	المميزات
یُرمز لها بـ T	یُرمز لها بـ T	الشدة	
T T T T T T T T T T T T T T T T T T T	\vec{T}	مثيل	<u>데</u>)

2-3- التماس بدون احتكاك و التماس بالاحتكاك:

<u>1-3-2 نشاط:</u>

نأخذ لوحتين من الخشب ، الأولى سطحها أملس و الثانية سطحها خشن . نميلهما بنفس الزاوية α بالنسبة للمستوى الأفقي . نضع آجُرة مرُة فوق السطح الخشن (شكل 1) و مرة فوق السطح الأملس (شكل 2) فنلاحظ أن الأجُرة تنزلق فوق السطح الأملس بينما تبقى ساكنة فوق السطح الخشن .

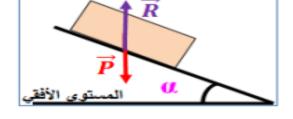
أ- اجرد القوى المطبقة على الأجرة في كل حالة و صنفها .

المجموعة المدروسة: { الأُجُرة } .

جرد القوى : وزنها \overrightarrow{P} وهي قوة عن بعد .

تأثير السطح \vec{R} وهي قوة تماس موزعة .

ب- أين يتم التماس بين الأجُرة و اللُّوحة الخشبية ؟


يتم التماس بين الأجُرة و اللوحة الخشبية على مستوى المساحة السفلية للأجُرة .

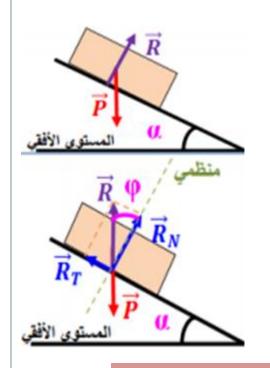
ج- مثل كيفيا القوى المطبقة على الأجُرة في حالة الشكل 1.

لا تنزلق الأَجُرة فهي في حالة توازن ، إذن المجموع المتجهي للقوى منعدم أي $\Sigma \vec{F} = \vec{P} + \vec{R} = \vec{0}$.

 $\sum_{i} F = P + R = 0$

. $\sum \vec{F} = \vec{P} + \vec{R} \neq \vec{0}$ أي

2-3-2 خلاصة :


نقول إن التماس تم بدون احتكاك ، إذا كانت قوة التماس الموزعة \overline{R} التي يُطبِقُها السطح الأملس على الجسم لا تحول دون الزلاقه . وقد التماس على الجسم لا تحول دون الزلاقه .

نقول إن التماس تم باحتكاك ، إذا كانت قوة التماس الموزعة \overline{R} التي يُطبِقُها السطح الخشن على الجسم تقاوم الزلاقه.

في حالة التماس بدون احتكاك يكون اتجاه القوة \overrightarrow{R} عموديا على سطح التماس.

في حالة التماس بالاحتكاك يكون اتجاه القوة \vec{R} مائلا بزاوية ϕ بالنسبة للمنظمي على سطح التماس.

- في هذه الحالة ، يكون لقوة التماس الموزعة \ مفعولان : الحالة مون الفراز الجسم في سطح التماس من خلال المركبة المنظمية
- مقاومة حركة الجسم من خلال المركبة المماسية \vec{R}_T (القوة المكافئة لجميع احتكاكات الانزلاق التي يطبقها سطح على جسم صلب وتُعَرّف أحيانا بقوة الاحتكاك أ). . $\vec{R} = \vec{R}_N + \vec{R}_T = \vec{R}_N + \vec{f}$

3- القوة الضاغطة – مفهوم الضغط:

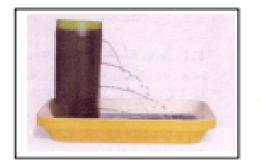
3-1- القوة الضاغطة:

: 1-1-1 نشاط :

نملاً نفاخة بكمية من الهواء ، ونحكم سد فو هتها .

أ- ما سبب انتفاخ النفاخة ؟

سبب انتفاخ النفاخة هو وجود قوة تضغط على السطح الداخلي للنفاخة عند ملإها بالهواء ب- اعط نوع القوة المطبقة من طرف الهواء على الجوانب الداخلية للنفاخة. القوة المطبقة من طرف الهواء على الجوانب الداخلية للنفاخة هي قوة تماس موزعة وتسمى القوة الضاغطة.

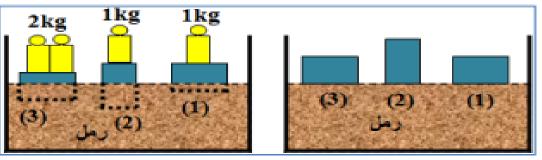


أ- حدد اتجاه اندفاع الماء من أحد الثقوب.

يندفع الماء من الثقب عموديا على سطح الإناء .

ب- استنتج خط تأثير القوة الضاغطة المطبقة من طرف الماء على السطح الداخلي للاناء

نستنتج أن خط تأثير القوة الضماغطة عمودي على سطح التماس بين الماء والإناء .


2-1-3- **خلاصة** :

القوة الضاغطة هي قوة التماس الموزعة المطبقة من طرف جسم صلب أو مانع (سائل أو غاز) على سطح جسم في تماس معه ، وخط تأثيرها عمودي على سطح الجسم الذي تُطبق عليه .

2-3- مفهوم الضغط:

: 1-2-3 نشاط

نأخذ ثلاث قطع من خشب لها نفس الشكل الهندسي ونفس الكتلة ، ونضعها فوق سطح الرمل ، ثم نضع فوقها كتلا معلمة فتنغرز القطع الخشبية في الرمل .

أ- قارن مساحة تماس القطع (1) و (2) و (3) مع الرمل . مساحة تماس القطع (1) و (3) مع الرمل ضعف مساحة تماس القطعة (2) مع الرمل . ب- قارن انغراز القطعتين (1) و (2) ثم (1) و (3) في الرمل .

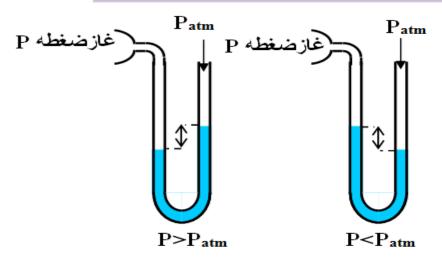
القطعتان (2) و (3) تنغرزان بمقدار يضاعف انغراز القطعة (1).

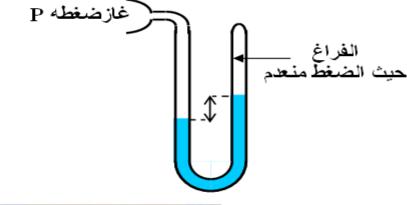
ج- بماذاً يتُعلَق مَفُعول القوة المطبقة من طرف القطعة الخشبية على سطح الرمل ؟ يتعلق مفعول القوة المطبقة من طرف القطعة الخشبية على سطح الرمل بشدة القوة الضاغطة ومساحة

<u>2-2-3 خلاصة :</u>

التماس ببنهما

تستعمل وحدات أخرى:


 $1bar = 10^5 Pa$ الأطموسفير


1atm = 101325Pa السنتيمتر من الزنبق

76cm - Hg = 101325Pa

يُعرَف مقدار الضغط بالعلاقة $\frac{F}{s} = \frac{V}{s}$ حيث F تمثل شدة القوة الضاغطة و S مساحة سطح الجسم الذي تُطبق عليه القوة . وحدة الضغط في (ن ع) هي الباسكال Pa حيث Pa . $Pa = 1N.m^{-2}$

- ❖ يُسلط الهواء من حولنا على الأجسام التي تلامسه قوة ضاغطة موزعة ، ونسمى الضغط في كل نقطة من الجو الضغط الجوي . القيمة المتوسطة للضغط الجوى عند سطح البحر هي : 1atm = 101325Pa
 - ♦ لقياس ضغط في جسم مائع نستعمل مضغاطا (ماثومتر) ، وهو نوعان : مضاغيط مطلقة المحلفة المحلف (تقيس الضغط بالنسبة للفراغ) و مضاغيط فرقية (تقيس الضغط بالنسبة للهواء الجوي) .
 - لقياس الضغط الجوي نستعمل بارومتر.

