تتبع تحول كيميائي

I - التُحول الكيميائسي - التفاعل الكيميائسي -

1]) التحول الكيميائي ا

▲ <u>التحولات الكيميائية</u> هي تحولات تطرأ بين أنواع كيميائية –تختفي كليا أو جزئيا – في ظروف معينة تسمى بالمتفاعلات وتؤدي إلى تكون أنواع كيميائية جديدة تسمى بالنواتج .

ً نسمى <u>المحموعة الكيميائية</u> : مجموع الأنواع الكيميائي المتواجدة في وسط التفاعل .

<u>ملحوظة :</u> خلال التحول الكيميائي قد نجد أحيانا بعض الأنواع الكيمائية لا يطرأ عليها أي تحول ، تسمى بأنواع <u>كيميائية غير نشيطة</u>. ﴿ ﴾ الْصاليةُ الْبِيلَئِيسَةُ هِ حالَةُ النَّحُولُ والْحاليةُ الْنَهَائِيبَةُ الْ الْعَالَيْةِ الْنَهَائِيبَةُ ا

- الحالـة البـدئية : هـي حالـة المجموعة الكيميائية قبل انطلاق التحـول.
- الحالـة التحول: هـي حالـة المجموعة الكيميائية في لحظة معينة خلال التحـول.
 - الحالـة النهائيـة : هـي حالـة المجموعة الكيميائية عند انتهـاء التحـول.

التفاعل الكيمياني ومعادلته ا

التفاعل الكيميـائي هو نموذج وصفي للتحول الكيميـائي على المستوى الماكروسكـوبي.

المعادلة الكيميائية هي كتابة رمزية لتفاعل كيميائي

- في المعادلة الكيميائية: - يـُمثل كل نوع كيميائي بصيغته الكيميائية .
- نستعمل سهما موجها من اليمين إلى اليسار لتمثيل منحى التفاعل الكيميائي.
 - توضع صيغ المتفاعلات على اليسار وصيغ النواتج يمين السهم .
- ويجب أن تكون المعادلة الكيميائية متوازنة . وبصفة عامة تكتب معادلة التفاعل كما يلي:

$$\alpha A + \beta B \rightarrow \gamma C + \delta D$$

A و B المتفاعلات . و C و انواتج التفاعل .

 α و β و γ و δ أعـداد صحيحة تسمـى المعاملات الستوكيوميترية .

II- تقدم التفاعل - الجدول الوصفي لتقدم التفاعل 8

7) تقدم التفاعل ا

لتتبع تطور كميات مادة الأنواع الكيميائية المشاركة في التفاعل الكيميائي نستعم<u>ل تقدم التفاعل</u> الذي يُرمز إليه ب : x ويُعبر عنه بالمول . وهو يُمثل كمية مادة المتفاعلات المختفية و كمية مادة النواتج المُكونة حسب المعاملات الستوكيوميترية.

2) جدول تقدم التفاعل ا

لتتبع تـطـور التفاعل تشـئ جـدول وصفـياباستعمـال تقـدم التفاعل يسمى<u>:جدول تقدم التفاعل</u> . و بصفة عامة لرسم جدول تقدم تفاعل معين يجب كتابة معادلة التوازن متوازنة. ثم رسم الجدول بالطريقة التالية :

αΑ +	βВ →	γC + δ	5 D	لتفاعل	معادلة ا
	، المادة بالموك	كميات		التقدم	الحالات
$n_i(A)$	$n_i(B)$	0	0	0	الحالة البدئية
$n_i(A) - \alpha.x$	$n_i(B) - \beta.x$	γ.x	$\delta .x$	х	حالة التحول
$n_i(A) - \alpha . x_f$	$n_i(B) - \beta . x_f$	$\gamma . x_f$	δx_f	x_f	الحالة النهائية

اً ﴾ تعریف 🖁

3) التقدم الأقصى ا

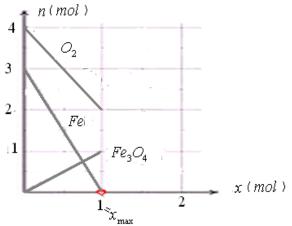
. نسمي التقدم الأقصى الذي يُرمز إليه ب: $x_{
m max}$: تقدم التفاعل الذي يوافق الاختفاء الكلي للمتفاعل المحد السمي التقدم الأقصى الذي يُرمز إليه ب $x_{
m max}$. وقد المحد ا

ب) نظیرق رقم 11 ا

يحترق الحديد Fe الصلب في غاز ثنائي الأوكسجين O_2 وينتج عن هذا التفاعل أكسيد الحديد المغناطيسي Fe_3O_4 الصلب.

- 1) اكتب معادلة التفاعل ووازنها.
- $oldsymbol{O}_2$ ارسم جدول تقدم التفاعل بالنسبة لخليط بدئي مكون من 3mol من الحديد و 4mol من 2
 - 3) حدد التقدم الأقصى والمتفاعل المحد .

 $3Fe+2O_2 \rightarrow Fe_3O_4$: معادلة التفاعل (1


2) جدول تقدم التفاعل:

3 Fe - +	معادلة التفاعل			
كمية المادة ب: mol				ال
3	4	o	o	الحالة البدئية
3-3x	4-2x:	x .	x	حالة التحوك
$3-3x_{\text{max}}$	$4-2x_{\text{max}}$	$x_{\rm max}$	$x_{\rm max}$	الحالة النهائية
$3 - 3 \times 1 = 0$	$4-2x^{1}=2$	1	1	

$$x_{\text{max}} = 1 mol$$
 : أي $= 3 x_{\text{max}} = 3$ هو المحد : $3 - 3 x_{\text{max}} = 0$ هو المحد : (3

$$x_{\rm max}=2mol$$
 : أي $\Leftarrow 2x_{\rm max}=4$ $4-2x_{\rm max}=0$: إذا افترضنا أن O_2 هو المحد

بما أن : 1mol أصغر من 2mol فإن التقدم الأقصى لهذا التفاعل : $x_{
m max}=1mol$ وبالتالي المتفاعل المحد هو : $x_{
m max}=1mol$ التفسير المبياني : نحصل عليه بتمثيل كمية مادة المتفاعلات المتبقية خلال التحول بدلالة تقدم التفاعل . وكمية مادة النواتج المتكونة خلال التحول بدلالة تقدم التفاعل.

يجب عدم تمديد الخطوط بعد $x_{
m max}$ لأن التفاعل يتوقف عند هذه القيمة ويصبح تركيب الخليط في نهاية التفاعل كما يلي :

المتبقية و
$$n_f(Fe) = 0$$

و:
$$n_f(Fe_3O_4) = 1mol$$
 المتكون

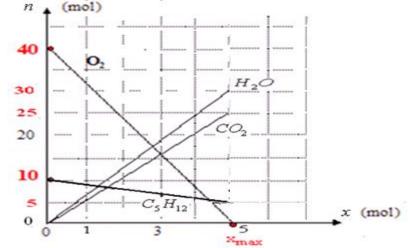
 $x_{\max}=2mol$ و 4mol من O_2 نجد نفس Fe من خليط مكون من 6mol من O_2 نجد نفس O_2 نجد نفس O_2 نجد نفس O_2 في هذه الحالة المتفاعلين كلاهما محد . نقول أن الخليط البدئي ستوكيوميتري .

المتبقية $n_f(O_2) = 2mol$

علما الاحتراق الكامل لغاز البنتان $C_5 H_{12}$ في غاز ثنائي الأوكسجين O_2 يؤدي لتكون ثاني أكسيد الكربون $C_5 H_{12}$ والماء .

- 1) اكتب معادلة هذا التفاعل ووازنها.
- . أرسم جدول تقدم عند استعمال 10mol من C_5H_{12} و 40mol من C_2 ثم حدد التقدم الأقصى (2
 - 3) ارسم المنحنى المعبر عن التفسير المبياني لهذا التحول .

$$C_5H_{12} + 8O_2 \to 5CO_2 + 6H_2O$$
 : معادلة التفاعل (1

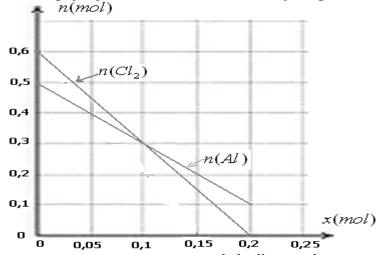

2) جدول تقدم التفاعل:

C_5H_{12}	+ 802	$-> 5CO_{2}$	+ 6H2O	التفاعل	معادلة
کمیه المادة ب: mol					ال
10	40	0	0	0	الحالة البدئية
10-x	40-8x	5x .	6х	х	حالة التحوك
10-x _{max}	40-8x _{max}	5x _{max}	6х _{тах}	× _{max}	الحالة النهائية
10-5 = 5	$40-8 \times 5 = 0$	5×5 = 25	$6 \times 5 = 30$	5]

$$x_{\rm max}=10$$
 \Leftarrow $10-x_{\rm max}=0$: هو المحد C_5H_{12} هو المحد (3

$$x_{
m max}=5mol$$
 : أي $\Leftarrow 8x_{
m max}=40$ $40-8x_{
m max}=0$: إذا افترضنا أن O_2 هو المحد

 $oldsymbol{x_{
m max}} = 5mol$: بما أن $x_{
m max} = 5mol$ وبالتالي المتفاعل المحد هو $x_{
m max} = 5mol$ وبالتالي المتفاعل المحد



يجب عدم تمديد الخطوط بعد $x_{\rm max}$ لأن التفاعل يتوقف عند هذه القيمة ويصبح تركيب الخليط في نهاية التفاعل كما يلي : $n_f(CO_2) = 25mol$ و : $n_f(CO_2) = 25mol$ و : $n_f(CO_2) = 25mol$ و : $n_f(CO_2) = 30mol$

ا تطبیق رقع 🕄 🗈

يتفاعل الألومينيوم Al مع غاز ثنائي الكلور Cl_2 فينتج عنه كلورور الألومينيوم Al معادلة التفاعل تكتب كما يلي : $Al+Cl_2 o AlCl_3$

نعطي المنحنى المبياني الذي يمثل تغيرات كميات مادة المتفاعلات والنواتج بدلالة تقدم التفاعل .

- وازن المعادلة ثم أنشئ جدول تقدم التفاعل.
 - حدد التقدم الأقصى والمتفاعل المحد.
- 3) مثل على المبيان تغيرات كلورور الألومينيوم و أعط تركيب الخليط عند نهاية التفاعل .

2 Al	+ 3 $Cl_2 \rightarrow$	2 AlCl ₃		معادلة التفاعل
عول	كميات المادة بال		التقدم	الحالات
0,5	0,6	0	0	الحالة البدئية
0.5 - 2.x	0,6-3.x	2.x	х	حالة التحول
$0,5-2.x_{\text{max}}$	$0.6 - 3.x_{\text{max}}$	$2.x_{\text{max}}$	$x_{\rm max}$	الحالة النهائية
0,1	0	0,4	0,2	

: تحدید ضغط غاز ناتج عن تفاعل کیمیائی

1) تجربة 🖁

عند الظروف التجريبيّ التالية : درجة الحرارة $P_{atm}=1013\,hPa$ و تحت الضغط الجوي $P_{atm}=1013\,hPa$ ندخل كتلة $H=20^{o}C$ من محلول من مسحوق الزنك في حوجلة حجمها V=10mL ثم نضيف إليها حجما V=10mL من محلول من محلول تركيزه V=10mL . C=0.5mol/L

 $Z_{n}+2H^{+}_{(aq)} \to Z_{n}^{2+}+H_{2}_{(aq)}$: فيحدث داخل الحوجلة التفاعل التالي

2) توقع ضغط الفاز الناتج عن التجربة .

يمكن توقع الضغط النهائي لغاز ثنائي الهيدروجين الناتج عن هذا التفاعل باستعمال طريقتين :

- إما تجريبيا باستعمال جهاز قياس الضغط.
 - أو نظريا باستعمال جدول تقدم التفاعل.

. $P_f = 1038\,hPa$ عند انتهاء انطلاق ضغط غاز ثنائي الهيدروجين بحيث يشير الجهاز إلى القيمة $P_f = 1038\,hPa$ الطريقة الثانية :

 $n_o(Zn) = \frac{m}{M} = \frac{32,7.10^{-3}}{65.4} = 0,5$ سبة مادة الزنك البدئية :

 $n_a(H^+) = c.V = 0.5 \times 10.10^{-3} = 5$ سية مادة H^+ البدئية :

<u>ننشئ جدول تقدم التفاعل :</u>

Zn +	2H+	$\rightarrow Zn^{2+}$	+ H ₂		معاذلة التغاعل
(mmol) کمیات المادة ب				التقدم	الحالات
0,5	5		0	0	الحالة البدئية
0,5-x	5 - 2.x	x	х	х	حالة التحول
$0.5 - x_{\text{max}}$	$5-2.x_{\text{max}}$	$x_{\rm max}$	$x_{\rm max}$	x_{max}	الحالة النهائية
0	4	0,5	0,5	0,5	

 $x_{
m max}$ = 0,5m.mol \ll 0,5 $-x_{
m max}$ = 0 : إذا افترضنا أن Zn هو المحد

. $x_{
m max} = 2,5$ m.mol \iff $5-2.x_{
m max}=0$: إذا افترضنا أن H^+ هو المحد

 $m{x}_{max}=0.5mol$: بما أن $x_{max}=0.5mol$ أصغر من $x_{max}=0.5mol$ فإن التقدم الأقصى لهذا التفاعل : $x_{max}=0.5mol$

 $n(H_2)=x_{
m max}=0,5mol$: نهاية النقاعل عند نهاية الناتج عند نهاية الناتج عند نهاية النقاعل عند كلال جدول تقدم التفاعل الناتج عند نهاية الناتج عند نهاية النقاعل الناتج عند نهاية النقاعل النقاعل

 $V(H_2) = 500 - 10 = 490 \, mL = 460 \, .10^{-6} \, m^3$: بتطبيق علاقة الغازات الكاملة على غاز H_2 الذي يشغل الحجم المتبقى في الحوجلة

$$P_{(H_2)}. = \frac{n_{(H_2)}.R.T}{V_{(H_2)}} = \frac{0.5 \times 10^{-3} \times 8.314 \times 293}{490 \times 10^{-6}} = 2485.7 Pa \approx 25 hPa$$
 : ومنه : $P_{(H_2)}.V_{(H_2)} = n_{(H_2)}.R.T$

والضغط النهائي داخل الحوجلة : $P_f = P_{(H_2)} + P_{atm} = 25 + 1013 = 1038 \ hPa$ وهي توافق النتيجة المحصل عليها تجريبيا.

التوجيهات المتعلقة بالدرس: تطبيقات لتتبع تحول كيمياني. - تطه ر مجموعة خلال تحول كيمياني: التقدم والجدول الوصفي للتطور وحصيلة المادة.

معارف ومهارات	أنشطة مقترحة	المحتوى
 وصف تطور كيميات المادة في مجموعة كيمياتية خلال تحول بدلالة تقدم التفاعل . تحديد المتفاعل المحد انطلاقا من معرفة معادلة التفاعل وكميات المادة البدنية للمتفاعلات . ترقع الحجم النهائي (الضغط معروف) أو الضغط النهائي (الحجم معروف) لمجموعة تتنج كمية المادة المغاز عند درجة حرارة ثابتة T. 	إنجاز، تحول كيمولني يتكون خلاله فاتج في الحالة الغازية. إنجاز، كلما أمكن، روانز تعرف العقاعات والنواتج. قياس، عند درجة حرارة ثابتة، حجم غاز (الضغط معروف) أو ضغط غاز (الحجم معروف). استعمال مانومتر مطلق أو فرقي لقياس تغير الضغط خلال التحول. حساب كمهة مادة غازية. انحاذ تحد مة هددة الأدنات ماستعمال، مدادت تد مستمد	تطبيقات لتتبع تحول كيمياني تطور مجموعة خلال تحول كيمياني التقدم والجدول الوصفي وحصيلة المادة.

الأهداف	التجارب
 قياس تغير ضغط غاز ناتج بدلالة حجم المتفاعل المضاف 	
 تتبع تطور كميات مادة المتفاعلات والنواتج. 	