

لسنة 2015 - 2016 سلس

تمارين: الدوال الأصلية

الصفحة

.01

حدد الدوال الأصلية للدالة f					
حيز تعريفها	دوال الأصلية F للدالة f	دالة f	رقم		
${\mathbb R}$		$f(x) = 8x^7 - 12x^4 - 14x^3 - 6x + 5$	1		
]0;+∞[]-∞;0[$f(x) = -4x^5 + \frac{2}{x^2} + 3$	2		
\mathbb{R}		$f(x) = (x+8)^2 +1$	3		
\mathbb{R}		$f(x) = (11x+1)^5 - 2x$	4		
${\mathbb R}$		$f(x) = \left(2x^3 - 9\right)^2 + 7x^2$	5		
]0;+∞[$f(x) = \frac{5}{\sqrt{x}}$	6		
]–2;+∞[$f(x) = \frac{1}{\sqrt{2x+4}}$	7		
\mathbb{R}		$f(x) = \frac{x^7}{\sqrt{x^8 + 1}}$	8		
R +		$\mathbf{f}(\mathbf{x}) = \sqrt[4]{\mathbf{x}}$	9		
R +		$\mathbf{f}(\mathbf{x}) = \sqrt[3]{\mathbf{x}^5}$	10		
]4;+∞[$f(x) = \sqrt[3]{2x - 8}$	11		
		$f(x) = x^7 \cdot \sqrt{5x^8 - 7}$	12		
\mathbb{R}		$f(x) = 3\sin\left(7x + \frac{\pi}{4}\right) - 5\cos\left(2x - \pi\right)$	13		
\mathbb{R}		$f(x) = 3x^4 \sin x^5$	14		
$\left]\!\!-\!\frac{\pi}{2},\!\frac{\pi}{2}\!\!\left[\right.$		$f(x) = \frac{1}{\cos^2 x}$	15		
\mathbb{R}		$f(x) = \sin x \cos^3 x$	16		
]3;+∞[أو]-∞;2[أو]2;3[$f(x) = \frac{2x-5}{\left(x^2 - 5x + 6\right)^8}$	17		
$\left]\!\!-\!\frac{\pi}{2},\!\frac{\pi}{2}\!\!\left[\right.$		$f(x) = \frac{\sin x}{\cos^5 x}$	18		
]0,+∞[]-∞;0[$f(x) = \frac{x^7 - 3x^2 - 5}{x^2}$	19		

لسنة 2015 - 2016 سلسة رق

تمارين: الدوال الأصلية

02

. $f(x) = \frac{x}{\sqrt{x-1}}$: Let $f(x) = \frac{1}{x-1}$

<u>.03</u>

 $\mathbf{F}(\mathbf{x}) = \frac{3}{2}\mathbf{x}^2 + 4\mathbf{x}$ و الدالتين $\mathbf{F}(\mathbf{x}) = \frac{1}{6}(3\mathbf{x} + 4)^2$ أصليتين لنفس الدالة $\mathbf{F}(\mathbf{x}) = \frac{3}{2}\mathbf{x}^2 + 4\mathbf{x}$

<u>.04</u>

. f(x) حدد \mathbf{F} دالة أصلية ل

.
$$F(x) = 2\sin(3x) + 7\cos(5x + \frac{\pi}{3})$$
 . $F(x) = 5\sqrt{x} - 2\frac{3}{\sqrt{x}}$

<u>.05</u>

 $[0,+\infty[$ و التي $G(x)=rac{1}{4}x^2-rac{3}{x^2}-7$. ϕ . ϕ

 $-\frac{\pi}{2}, \frac{\pi}{2}$ المعرفة على $-\frac{\pi}{2}, \frac{\pi}{2}$ المعرفة على $-\frac{\pi}{2}, \frac{\pi}{2}$ المعرفة على $-\frac{\pi}{2}, \frac{\pi}{2}$ و $-\frac{\pi}{2}, \frac{\pi}{2}$ المعرفة على $-\frac{\pi}{2}, \frac{\pi}{2}$

<u>.06</u>

. $f(x) = \frac{3x+4}{(x+1)^3}$: ب $\mathbb{R} \setminus \{-1\}$ بادالة العددية f المعرفة على الدالة العددية المعرفة على الدالة العددية بالمعرفة على المعرفة على الدالة العددية المعرفة على المعرفة المعرف

 $f(x) = \frac{a}{(x+1)^2} + \frac{b}{(x+1)^3}$ عدد a من a حدد a من a

.] $-1:+\infty$ على]0+:1-1

.07

 $f(x) = (\sin^2 x - 3\sin x + 8)\cos x$: ب \mathbb{R} ب الدالة العددية المعرفة على \mathbb{R}

. $\mathbf{F}\left(\frac{3\pi}{2}\right)=0$ و \mathbb{R} و المعرفة على الدالة الأصلية

سنة 2015 - 2016 سلس

تصحيح تمارين: الدوال الأصلية

الصفحة

.01

${f f}$ نحدد الدوال الأصلية للدالة					
حيز تعريفها	$\mathbf{c} \in \mathbb{R}$ دوال الأصلية \mathbf{F} للدالة \mathbf{f} مع	دالة f	رقم		
${\mathbb R}$	$F(x) = x^8 - \frac{12}{5}x^4 - \frac{7}{2}x^3 - 3x + 5x + c$	$f(x) = 8x^7 - 12x^4 - 14x^3 - 6x + 5$	1		
]0;+∞[أو]—∞;0[$F(x) = -\frac{2}{3}x^6 - \frac{2}{x} + 3x + c$	$f(x) = -4x^5 + \frac{2}{x^2} + 3$	2		
${\mathbb R}$	$F(x) = \frac{1}{3}(x+8)^3 + 3x + c$	$f(x) = (x+8)^{2} + 1$ $= (x+8)^{1}(x+8)^{2} + 1$	3		
R	$F(x) = \frac{1}{11} \times \frac{1}{6} (11x+1)^6 - x^2 + c$	$f(x) = (11x+1)^5 - 2x$ $= \frac{1}{11}(11x+1)'(11x+1)^5 - 2x$	4		
${\mathbb R}$	$F(x) = \frac{4}{7}x^7 - 9x^4 + 81x + c$	$f(x) = (2x^3 - 9)^2 + 7x^2$ $= 4x^6 - 36x^3 + 81$	5		
]0;+∞[$\mathbf{F}(\mathbf{x}) = \frac{5}{2} \times \sqrt{\mathbf{x}} + \mathbf{c}$	$f(x) = \frac{5}{\sqrt{x}} = \frac{5}{2} \times \frac{1}{2\sqrt{x}}$	6		
]-2;+∞[$F(x) = \sqrt{2x+4}$	$f(x) = \frac{1}{\sqrt{2x+4}} = \frac{(2x+4)'}{2 \times \sqrt{2x+4}}$	7		
IR	$F(x) = \frac{1}{8} \times \frac{1}{-\frac{1}{2} + 1} (x^8 + 1)^{-\frac{1}{2} + 1} + c$ $= \frac{1}{4} \sqrt{x^8 + 1} + c$	$f(x) = \frac{x^7}{\sqrt{x^8 + 1}}$ $= \frac{1}{8} (x^8 + 1)^{-1} (x^8 + 1)^{-\frac{1}{2}}$	8		
ℝ+	$F(x) = \frac{1}{\frac{1}{4} + 1} x^{\frac{1}{4} + 1} + c$ $= \frac{4}{5} \times \sqrt[4]{x^5} + c$	$\mathbf{f}(\mathbf{x}) = \sqrt[4]{\mathbf{x}} = \mathbf{x}^{\frac{1}{4}}$	9		
ℝ+	$F(x) = \frac{1}{\frac{5}{3} + 1} x^{\frac{5}{3} + 1} + c$ $= \frac{3}{8} \times \sqrt[3]{x^8} + c$	$\mathbf{f}(\mathbf{x}) = \sqrt[3]{\mathbf{x}^5} = \mathbf{x}^{\frac{5}{3}}$	10		
]4;+∞[$F(x) = \frac{1}{2} \times \frac{1}{4} (2x - 8)^{4} + c$ $= \frac{1}{8} (2x - 8)^{4} + c$	$f(x) = \sqrt[3]{2x - 8}$ $= \frac{1}{2} (2x - 8)^{1} (2x - 8)^{3}$	11		

لسنة 2015 - 2016 سا

تصحيح تمارين: الدوال الأصلية

لصفحة

	$F(x) = \frac{1}{5} \frac{1}{\frac{1}{2} + 1} (5x^8 - 7)^{\frac{1}{2} + 1} + c$ $= \frac{2}{15} (5x^8 - 7)^{\frac{3}{2}} + c$ $= \frac{2}{15} \sqrt{(5x^8 - 7)^3} + c$	$f(x) = x^7 \cdot \sqrt{5x^8 - 7}$ $= \frac{1}{5} (5x^8 - 7)^{\frac{1}{2}} (5x^8 - 7)^{\frac{1}{2}}$	12
${\mathbb R}$	$F(x) = -\frac{3}{4}\cos\left(7x + \frac{\pi}{4}\right) - 5 \times \frac{1}{2}\sin\left(2x - \pi\right) + c$	$f(x) = 3\sin\left(7x + \frac{\pi}{4}\right) - 5\cos\left(2x - \pi\right)$	13
${\mathbb R}$	$F(x) = -3 \times \frac{1}{5} \cos x^5 + c$	$f(x) = 3x^4 \sin x^5 = 3 \times \frac{1}{5} (x^5)^3 \sin x^5$	14
$\left]-\frac{\pi}{2},\frac{\pi}{2}\right[$	$F(x) = \tan x + c$	$f(x) = \frac{1}{\cos^2 x} = (\tan x)^{'}$	15
${\mathbb R}$	$f(x) = -\frac{1}{4}\cos^4 x + c$	$f(x) = \sin x \cos^3 x = -(\cos x)^{'} \cos^3 x$	16
]3;+∞]2;3[أو]-∞;2[$F(x) = \frac{1}{9}(x^2 - 5x + 6)^9 + c$	$f(x) = \frac{2x-5}{(x^2-5x+6)^8}$ $= (x^2-5x+6)^3(x^2-5x+6)^8$	17
$\left]-\frac{\pi}{2},\frac{\pi}{2}\right[$	$f(x) = -4\cos^{-4}x + c = \frac{-4}{\cos^4 x} + c$	$f(x) = \frac{\sin x}{\cos^5 x} = -(\cos x)^{\frac{1}{2}} \cos^{-5} x$	18
]0,+∞[أو]–∞;0[$F(x) = \frac{1}{6}x^6 - 3X + \frac{5}{x} + c$	$f(x) = \frac{x^7 - 3x^2 - 5}{x^2} = x^5 - 3 - \frac{5}{x^2}$	19

. $f(x) = \frac{x}{\sqrt{x-1}}$: Let $f(x) = \frac{x}{\sqrt{x-1}}$

لدينا:

$$f(x) = \frac{x}{\sqrt{x-1}}$$

$$= \frac{x-1+1}{\sqrt{x-1}}$$

$$= \frac{x-1}{\sqrt{x-1}} + \frac{1}{\sqrt{x-1}}$$

$$= \sqrt{x-1} + 2 \times \frac{(x-1)}{2\sqrt{x-1}}$$

$$= (x-1) (x-1)^{\frac{1}{2}} + 2 \times \frac{(x-1)}{2\sqrt{x-1}}$$

ومنه:

لسنة 2015 - 2016 سا

تصحيح تمارين: الدوال الأصلية

الصفحة

$$F(x) = \frac{1}{\frac{1}{2} + 1} (x - 1)^{\frac{1}{2} + 1} + 2 \times \sqrt{x - 1} + c$$
$$= \frac{2}{3} \sqrt{(x - 1)^3} + 2 \times \sqrt{x - 1} + c$$

. $\mathbf{F}(\mathbf{x}) = \frac{2}{3} \sqrt{(\mathbf{x} - \mathbf{1})^3} + 2 \times \sqrt{\mathbf{x} - \mathbf{1}} + \mathbf{c}$ هي على شكل $\mathbf{f}(\mathbf{x}) = \frac{\mathbf{x}}{\sqrt{\mathbf{x} - \mathbf{1}}}$: الدوال الأصلية لدالة التالية والمرابق المرابق الم

.03

f(x) فصليتين لنفس الدالة $G(x) = \frac{3}{2}x^2 + 4x$ و $F(x) = \frac{1}{6}(3x + 4)^2$ أصليتين لنفس الدالة $\mathbf{G}(x)$

f(x) دالة أصلية ل G(x) نعتبر

لديناء

$$F(x) = G(x) \text{ exist} F(x) = \frac{1}{6}(3x+4)^2 = \frac{1}{6}(9x^2+24x+16) = \frac{3}{2}x^2+4x+\frac{4}{3} = G(x)+\frac{4}{3}$$

ومنه: f(x) اِذن F(x) دالة أصلية ل $F(x) = G(x) + \frac{4}{3}$

f(x) فالميتين لنفس الدالة $G(x) = \frac{3}{2}x^2 + 4x$ و $F(x) = \frac{1}{6}(3x + 4)^2$ في خلاصة :

.04

. f(x) حدد \mathbf{F} . الله أصلية ل \mathbf{F}

$$. F(x) = 3x^4 - 2x + 5 \underline{\underline{\hspace{1cm}}}$$

$$\mathbf{F'(x)} = \mathbf{f(x)} \Leftrightarrow (3x^4 - 2x + 5)' = \mathbf{f(x)}$$
 دالة أصلية ل \mathbf{f} و منه \mathbf{F} دالة أصلية ل \mathbf{F}

$$f(x) = 12x^3 - 2$$
 خلاصة:

$$\cdot \mathbf{F}(\mathbf{x}) = -\mathbf{x} + \frac{3}{\mathbf{x}} \underline{\underline{\quad -\mathbf{y}}}$$

$$\mathbf{F}'(\mathbf{x}) = \mathbf{f}(\mathbf{x}) \Leftrightarrow \left(-\mathbf{x} + \frac{3}{\mathbf{x}}\right)' = \mathbf{f}(\mathbf{x})$$
 دالة أصلية ل \mathbf{f} و منه : \mathbf{F}

$$\Leftrightarrow -1 - \frac{3}{\mathbf{x}^2} = \mathbf{f}(\mathbf{x})$$

.
$$f(x) = -1 - \frac{3}{x^2}$$
 : خلاصة

$$F(x) = 5\sqrt{x} - \frac{3}{\sqrt{x}} = \frac{7}{\sqrt{x}}$$

$$\mathbf{F}'(\mathbf{x}) = \mathbf{f}(\mathbf{x}) \Leftrightarrow \left(5\sqrt{\mathbf{x}} - \frac{3}{\sqrt{\mathbf{x}}}\right)' = \mathbf{f}(\mathbf{x})$$
 دالة أصلية ل \mathbf{F}

لسنة 2015 - 2016 سلس

تصحيح تمارين: الدوال الأصلية

الصفحة

$$\Leftrightarrow \frac{5}{2\sqrt{x}} - 3 \times \left(-\frac{1}{2}\right) x^{-\frac{1}{2}-1} = f(x)$$

$$\Leftrightarrow \frac{5}{2\sqrt{x}} + \frac{3}{2} \times \frac{1}{\sqrt{x^3}} = f(x)$$

.
$$f(x) = \frac{5}{2\sqrt{x}} + \frac{3}{2} \times \frac{1}{\sqrt{x^3}}$$
 : خلاصة

$$F(x) = 2\sin(3x) + 7\cos\left(5x + \frac{\pi}{3}\right)$$

$$\mathbf{F}'(\mathbf{x}) = \mathbf{f}(\mathbf{x}) \Leftrightarrow \left(2\sin(3\mathbf{x}) + 7\cos\left(5\mathbf{x} + \frac{\pi}{3}\right)\right) = \mathbf{f}(\mathbf{x})$$
 دالة أصلية ل \mathbf{f} و منه : \mathbf{F} $\Leftrightarrow 6\cos(3\mathbf{x}) - 35\sin\left(5\mathbf{x} + \frac{\pi}{3}\right) = \mathbf{f}(\mathbf{x})$

. $f(x) = 6\cos(3x) - 35\sin(5x + \frac{\pi}{3})$: فلاصة

.05

و التي $[0,+\infty[$ لنعتبر الدالة العددية المعرفة على $[0,+\infty[$ $[0,+\infty[$] $[0,+\infty[$ و التي $[0,+\infty[$ و التي $[0,+\infty[$ المعرفة على $[0,+\infty[$ و التي تنعده في $[0,+\infty[$

 $\mathbf{F}(\mathbf{x}) = \frac{1}{12}\mathbf{x}^3 - \frac{3}{\mathbf{x}} - 7\mathbf{x} + \mathbf{c}$: هي على شكل $\mathbf{f}(\mathbf{x}) = \frac{1}{4}\mathbf{x}^2 - \frac{3}{\mathbf{x}^2} - 7$ الدوال الأصلية لدالة التالية

$$F(-1) = 0 \Leftrightarrow \frac{1}{12}(-1)^3 - \frac{3}{-1} - 7(-1) + c = 0$$

$$\Leftrightarrow c = -\frac{119}{12}$$

.
$$F(x) = \frac{1}{12}x^3 - \frac{3}{x} - 7x - \frac{119}{12}$$
: و بالتالي

 $\mathbf{F}(\mathbf{x}) = rac{1}{12} \mathbf{x}^3 - rac{3}{\mathbf{x}} - 7\mathbf{x} - rac{119}{12}$: حدد الدالة الأصلية \mathbf{F} المعرفة على $\mathbf{F}(\mathbf{x}) = 0,+\infty$ و التي تنعدم في \mathbf{F} هي

ينعتبر الدالة العددية المعرفة على $-\frac{\pi}{2}, \frac{\pi}{2}$ $-\frac{\pi}{2}, \frac{\pi}{2}$ المعرفة على $-\frac{\pi}{2}, \frac{\pi}{2}$ و $-\frac{\pi}{2}, \frac{\pi}{2}$ المعرفة على $-\frac{\pi}{2}, \frac{\pi}{2}$ و

 $\mathbf{F}(0)=1$

 $F(x) = \tan x + \sin x + c$ الدوال الأصلية لدالة التالية : $f(x) = \frac{1}{\cos^2 x} + \cos x$ الدوال الأصلية لدالة التالية :

$$F(0)=1 \Leftrightarrow \tan 0 + \sin 0 + c = 1$$
 من جهة أخرى:

.
$$F(x) = \tan x + \sin x + 1$$
: و بالتالي

 $\mathbf{F}(\mathbf{x}) = an\mathbf{x} + \sin\mathbf{x} + 1$ هي \mathbf{F} المعرفة على \mathbf{F} على أ \mathbf{F} و التي تنعدم في \mathbf{F} هي

سنة 2015 - 2016 سلسة ر

تصحيح تمارين: الدوال الأصلية

الصفحة

<u>.06</u>

. $f(x) = \frac{3x+4}{(x+1)^3}$: $\mathbb{R} \setminus \{-1\}$ ب المعرفة على $\{-1\}$ ب المعرفة على ويعتبر الدالة العددية

$$f(x) = \frac{a}{(x+1)^2} + \frac{b}{(x+1)^3}$$
 خيث: \mathbb{R} من \mathbf{a} حيث:

لدينا:

$$f(x) = \frac{a}{(x+1)^2} + \frac{b}{(x+1)^3} \Leftrightarrow \frac{3x+4}{(x+1)^3} = \frac{a(x+1)+b}{(x+1)^3} = \frac{ax+a+b}{(x+1)^3}$$

$$b = 1 \quad \text{a} \quad a = 3 \quad \text{b} \quad a = 3$$

$$f(x) = \frac{3}{(x+1)^2} + \frac{1}{(x+1)^3}$$
 و $b=1$ و $a=3$

طريقة 2:

لدينا:

$$f(x) = \frac{3x+4}{(x+1)^3} = \frac{3x+3+1}{(x+1)^3} = \frac{3x+3}{(x+1)^3} + \frac{1}{(x+1)^3} = \frac{3(x+1)}{(x+1)^3} + \frac{1}{(x+1)^3} = \frac{3}{(x+1)^2} + \frac{1}{(x+1)^3}$$

$$f(x) = \frac{3}{(x+1)^2} + \frac{1}{(x+1)^3}$$
 و $b=1$ و $a=3$

 $-1:+\infty$ على $-1:+\infty$. الله أصلية للدالة $-1:+\infty$

$$f(x) = \frac{3}{(x+1)^2} + \frac{1}{(x+1)^3} = 3(x+1)^{-1}(x+1)^{-2} + (x+1)^{-1}(x+1)^{-3}$$
 لاينا:

. $F(x) = -3(x+1)^{-1} - \frac{1}{2}(x+1)^{-2} = -\frac{3}{x+1} - \frac{1}{2(x+1)^2}$. $[-1:+\infty[$ هي $[-1:+\infty[$

$$\mathbf{F}(\mathbf{x}) = -rac{3}{\mathbf{x}+1} - rac{1}{2(\mathbf{x}+1)^2}$$
: هي $\mathbf{j}-1:+\infty$ على \mathbf{f} على \mathbf{f} خلاصة المالية للدالة أصلية للدالة المالية الدالة أصلية الدالة المالية المالية المالية الدالة المالية الدالة المالية المالية المالية الدالة المالية الدالة المالية المالية المالية الدالة المالية ال

<u>07</u>

ي لنعتبر الدالة العددية المعرفة على $\mathbb R$ ب $\cos x: \cos x = f(x) = \sin^2 x - 3\sin x + 8$ حدد الدالة الأصلية $\mathbf F$ المعرفة على $\mathbb R$ و

$$\cdot \mathbf{F}\left(\frac{3\pi}{2}\right) = 0$$

. $\mathbf{F}\left(\frac{3\pi}{2}\right)=\mathbf{0}$ و \mathbb{R} و المعرفة على \mathbf{F} المعرفة على

لدينا:

لسنة 2015 - 2016 سلّ

تصحيح تمارين: الدوال الأصلية

الصفحة

$$f(x) = \left(\sin^2 x - 3\sin x + 8\right)\cos x$$

$$= \cos x \sin^2 x - 3\cos x \sin x + 8\cos x$$

$$= \left(\sin x\right) \sin^2 x - 3\left(\sin x\right) \sin x + 8\cos x$$

$$F(x) = \frac{1}{3}\sin^3 x - 3 \times \frac{1}{2}\sin^2 x + 8\sin x + c \quad : \phi \quad \text{find the points}$$

$$e \quad \text{otherwise}$$

$$F\left(\frac{3\pi}{2}\right) = 0 \Leftrightarrow \frac{1}{3}\sin^3\left(\frac{3\pi}{2}\right) - 3 \times \frac{1}{2}\sin^2\left(\frac{3\pi}{2}\right) + 8\sin\left(\frac{3\pi}{2}\right) + c = 0 \quad : \phi \quad \text{otherwise}$$

$$\Leftrightarrow \frac{1}{3}(-1)^3 - 3 \times \frac{1}{2}(-1)^2 + 8(-1) + c = 0$$

$$\Leftrightarrow c = -\frac{59}{6}$$

$$F(x) = \frac{1}{3}\sin^3 x - 3 \times \frac{1}{2}\sin^2 x + 8\sin x - \frac{59}{6}$$
:

.
$$F(x) = \frac{1}{3}\sin^3 x - 3 \times \frac{1}{2}\sin^2 x + 8\sin x - \frac{59}{6}$$
 هي $F(\frac{3\pi}{2}) = 0$ هي $F(x) = \frac{1}{3}\sin^3 x - 3 \times \frac{1}{2}\sin^2 x + 8\sin x - \frac{59}{6}$ هي خلاصة :