Niveaux: SM PC SVT | Matière: chimie

PROF: Zakaryae Chriki | Résumé N:6

L'evolition spontanée d'un système chimique



# 1. Rappel sur le quotient d'une réaction

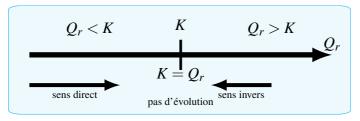
Le quotient de réaction  $Q_r$  pour une réaction chimique d'équation :  $aA(aq) + bB(aq) \rightleftharpoons cC(aq) + dD(aq)$ 

$$Q_r = \frac{[C]^c.[D]^d}{[A]^a.[B]^b}$$

s'écrit dans un état donné du système :  $\left|Q_r = \frac{[C]^c.[D]^d}{[A]^a.[B]^b}\right|$  L'expression de  $Q_r$  ne fait intervenir que les concentrations des espèces

chimiques dissoutes, rxprimées en mol/l et  $Q_r$  est sans unité.

# N.B


A une température donnée, le quotient de réaction à l'équilibre  $Q_{r,éq}$  est une constante quel que soit l'état initial considéré : K=Q<sub>r,eq</sub>

- La constante d'équilibre dépend uniquement de la température.
- Le taux d'avancement final d'une réaction à température donnée dépend de la constante d'équilibre (plus cette constante est grande, plus le taux d'avancement est grand), mais dépend aussi dépend des conditions initiales.

### 2. Le critère d'evolition d'un système:

Un système chimique va évoluer de façon que Qr tend vers la valeur de la constante d'equlibre K On en distingue trois cas

K = Qr Le système est en équilibre et n'évolue dans aucun sens : la composition du système ne varie plus. K > Qr L'évolution spontanée se produit dans le **sens direct** (1) (sens de consommation des réactifs)  $K \rightarrow Qr$ K < Qr L'évolution spontanée se produit dans le sens indirect (2) (sens de consommation des Produits) K 🗲 Qr



Dans la cas ou K < Qr et évolution du système dans le sens indirect il faut inverser l'écriture de l'équation

$$cC_{(q)} + dD_{(q)}$$
  $aA_{(q)} + bB_{(q)}$ 

Lorsque l'on modifie la quantité de matière de l'une des espèces chimiques présente dans un système chimique à l'équilibre, l'évolution s'oppose à cette modification :

- Si une espèce chimique est apportée, l'évolution se fait dans le sens de sa consommation.
- Si une espèce chimique est éliminée, l'évolution se fait dans le sens de sa production.

# 3. Application

On introduit dans un bécher :

- \*  $V_1 = 10,0ml$  d'une solution d'acide acétique de concentration C = 0,010mol/l
- \*  $V_2 = 10,0ml$  d'une solution d'acétate de sodium fraîchement préparée de même concentration C;
- \*  $V_3 = 20,0ml$  d'une solution d'ammoniac  $NH_3$  de concentration C' = 0,025mol/l;
- \*  $V_4 = 10,0ml$  d'une solution de chlorure d'ammonium  $NH_4^+(aq) + Cl^-(aq)$  de même concentration C'.
- 1. Écrire l'équation de la réaction qui peut se produire en considérant l'acide acétique comme un réactif .
- 2. On donne la constante d'acidité des deux couples  $K_a(CH_3COOH/CH_3COO^-) = 10^{-4.8}$  et  $K_a(NH_4^+/NH_3) = 10^{-9.2}$ . Déterminer la constante d'équilibre K associée à cette réaction .
- 3. Déterminer la valeur de la quotient de réaction dans l'état initial  $Q_{r,i}$  du système.
- 4. Dans quel sens le système va-t-il évolué?