1BAC SM BIOF

Résumé de cours **PRODUIT SCALAIRE**

PROF: ATMANI NAJIB

PRODUIT SCALAIRE DANS V_2 **Etude analytique (2)**

-Applications-: cercle

Dans tout ce qui va suivre le plan (P) est rapporté à un repère $\mathcal{R}(O;i;j)$ orthonormé.

I) EQUATION D'UN CERCLE

Définition : Soient Ω un point et r un réel positif, le cercle de centre Ω et de rayon r est l'ensemble des points M dans le plan (\mathcal{P}) qui vérifient $:\Omega M = r$ on le note, $C(\Omega,r):C(\Omega;r)=\{M\in(\mathcal{P})/\Omega M=r\}$

1) Cercle défini par son centre et son rayon.

Propriété : Soient $\Omega(a, b)$ un point et r un réel positif, le cercle $\mathcal{C}(\Omega,r)$ à une équation cartésienne de la forme : $C(\Omega,r)$: $(x-a)^2 + (y-b)^2 = r^2$

2) Equation réduite d'un cercle

Propriété1: Tout cercle dans le plan à une équation de la forme : $x^2 + y^2 + \alpha x + \beta y + \gamma = 0$ où α , β et γ sont des réels.

Propriété2 : Soit (C) L'ensemble des points

M(x; y) du plan tel que : $x^2 + y^2 - 2ax - 2by + c = 0$

avec a; b; c des réelles

• Si: $a^2+b^2-c > 0$

alors (C) est une cercle de centre

 $\Omega(a;b)$ et de rayon $R = \sqrt{a^2 + b^2 - c}$

• Si : $a^2+b^2-c=0$ alors $(C) = \{\Omega(a;b)\}$

• Si : $a^2+b^2-c < 0$ alors $(c)=\emptyset$

3) Cercle définie par son diamètre.

Propriété: Soient $A(x_A; y_A)$ et $B(x_B; y_B)$ deux points distincts dans le plan, le cercle de diamètre [AB] à pour équation :

$$(x-x_A)(x-x_B)+(y-y_A)(y-y_B)=0$$

Et: $M(x; y) \in (C) \Leftrightarrow \overrightarrow{MA}.\overrightarrow{MB} = 0$

4) cercle définie par trois points ou Cercle circonscrit à un triangle

Soit ABC un triangle, les médiatrices du triangle ABC se coupent en Ω le Centre du cercle circonscrit du triangle *ABC*

II) L'INTERIEUR ET L'EXTERIEUR D'UN CERCLE.

Définition : Soit $C(\Omega; r)$ un cercle dans le plan.

a) L'ensemble des points M dans le plan qui vérifient $\Omega M \leq r$ s'appelle la boule fermée de centre Ω et de rayon r, il s'appelle aussi l'intérieur du cercle $C(\Omega;r)$

b) L'ensemble des points *M* dans le plan qui vérifient $\Omega M > r$ s'appelle l'extérieur du cercle $C(\Omega; r)$

Application : La résolution graphique de quelques systèmes d'inéquation

III) POSITIONS RELATIVES D'UN CERCLE EST D'UNE DROITE.

- 1) **Propriété** :Soit C(O;r) un cercle de rayon rstrictement positif et (D) une droite dans le plan. Pour étudier les positions relatives du cercle C(O;r) de
- (D), il suffit de déterminer la distance de O à (D). soit H la projection orthogonal de O sur (D)

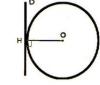
a)Si
$$d(O;(D)) = OH \succ r$$

La droite (D) est strictement à L'extérieure du cercle (\mathcal{C}) $(\mathcal{C}) \cap (D) = \emptyset$

b)
$$d(O;(D)) = OH = r$$

Puisque OH = r alors H est un point Commun entre (D) et (C).

 $(\mathcal{C}) \cap (D) = \{H\}$ Ont dit que la droite (D) est tangente au cercle (\mathcal{C}) en H



c) $d(0, (D)) = \Omega H < r$

Dans ce cas le cercle (\mathcal{C}) et la droite(D) se coupent en deux points M_1 et M_2 et H est le milieu du

segment $[M_1M_2]$

2.1) Définition : Une droite (D) est dite tangente à un cercle (\mathcal{C}) s'ils se coupent en un seul point.

Soit $\mathcal{C}(\Omega, r)$ un cercle dans le plan où $\Omega(a, b)$ et Al'un de ses points.

Soit la droite (T) la tangente à \mathcal{C} (Ω , r) en A

 $M(x; y) \in (T) \Leftrightarrow A\overrightarrow{M}.\overrightarrow{A\Omega} = 0$

Propriété : Soient Ω (a, b) un point et \mathcal{C} (Ω , r) un cercle dans le plan et *A* l'un de ses points. La droite (T) tangente à $\mathcal{C}(\Omega,r)$ en A à pour équation :

$$(x-x_A)(y-y_A)+(a-x_A)(b-y_A)=0$$

.3) Equation paramétrique d'un cercle.

l'équation paramétrique du cercle (C) de centre

$$\Omega(a, b)$$
 et de rayon r est :
$$\begin{cases} x = a + r \cos \alpha \\ y = b + r \sin \alpha \end{cases} \alpha \in \mathbb{R}$$

C'est en forgeant que l'on devient forgeron » Dit un proverbe.

