Feuille d'exercices : Probabilités

Exercice 1 (*)

On lance deux dés simultanément. Décrire de façon ensembliste les événements A: « On obtient deux fois le même résultat » et B: « La somme des deux chiffres est inférieure ou égale à 4 ». Calculer $P(A), P(B), P(A \cup B)$ et $P(A \cap B)$.

Exercice 2 (**)

On lance un dé quatre fois de suite. Calculer les probabilités suivantes :

- 1. On obtient quatre fois le même chiffre.
- 2. On obtient quatre chiffres différents.
- 3. On obtient quatre chiffres qui se suivent.

Exercice 3 (**)

Un coffre contient 10 diamants, 15 emeraudes et 20 rubis. On tire quatre pierres précieuses au hasard dans le coffre. Calculer les probabilités suivantes (valeurs exactes, puis une valeur approchée à 10^{-2} près à l'aide de la calculatrice) :

- 1. Les quatre pierres sont du même type.
- 2. On tire deux diamants et deux rubis.
- 3. On tire autant de diamants que de rubis.

Exercice 4 (**)

On tire simultanément trois dés et on note la somme des trois résultats obtenus. Combien y a-t-il de façons d'obtenir 9? Et 10? Les probabilités des deux sommes sont-elles égales?

Exercice 5 (*)

Dans une urne se trouvent 4 boules noires et deux boules blanches. Cinq personnes tirent successivement (sans remise) une boule dans l'urne. Le premier qui tire une boule blanche a gagné, quelle est la probabilité de gain pour chaque personne?

Exercice 6 (***)

Dans une urne sont placées 15 boules vertes et 10 boules blanches. On tire successivement (sans remise) 5 boules dans l'urne. Calculer les probabilités suivantes :

1. On obtient 5 boules vertes.

- 2. On obtient une première boule verte, les deux suivantes blanches, les deux dernières vertes.
- 3. On obtient au plus une boule blanche.
- 4. On obtient trois boules vertes et deux blanches.

Reprendre l'exercice avec des tirages avec remise.

Exercice 7 (**)

Dans une classe de 38 élèves, 31 étudient l'anglais, 24 l'espagnol, 17 l'allemand; 12 étudient à la fois anglais et allemand, 9 étudient espagnol et allemand, et 4 etudient les trois langues simultanément. On tire un élève au hasard. Calculer les probabilités suivantes :

- 1. Il étudie l'anglais et l'espagnol.
- 2. Il étudie l'anglais ou l'espagnol.
- 3. Il étudie uniquement l'allemand.

Exercice 8 (***)

Deux personnes A et B jouent au jeu suivant : A lance un pièce, s'il obtient Pile, il a gagné. Sinon, B lance une pièce, s'il obtient Face il a gagné. Sinon, c'est à nouveau à A de jouer ...On note A_k (respectivement B_k) l'événement : « Le joueur A (respectivement B) gagne à son k-ème lancer ». Calculer la probabilité de A_k et de B_k . On suppose désormais que le jeu s'arrêt après 10 lancers (cinq pour chaque joueur). Calculer la probabilité des événements suivants :

- 1. Le joueur A gagne en lançant moins de trois fois la pièce.
- 2. Le jouer B gagne.
- 3. Personne ne gagne.
- 4. On suppose que quelqu'un a gagné. Quelle est la probabilité que ce soit A?

Exercice 9 (***)

On range aléatoirement cinq boules distingables dans quatre boites également distingables.

- 1. Quel est le nombre de rangements différents possibles?
- 2. Quelle est la probabilité que toutes les boules soient rangées dans la même boite?
- 3. Quelle est la probabilité que deux boites exactement soient vides?
- 4. Même question avec une boite vide.
- 5. En déduire la probabilité qu'aucune boite ne soit vide.
- 6. Retrouver ce résultat directement à l'aide de la formule de Poincaré.

Exercice 10 (***)

Un tournoi de tennis accueille 64 joueurs, dont 8 sont têtes de séries. Un bug au moment d'effectuer le tirage au sort fait remplir le tableau de façon totalement aléatoire, y compris les têtes de séries.

- 1. Quelle est la probabilité qu'au moins deux têtes de série se rencontrent dès le premier tour?
- 2. Quelle est la probabilité que les têtes de séries ne puissent pas se rencontrer avant les quarts de finale ?

Feuille d'exercices : corrigé

Exercice 1 (*)

Il existe plusieurs façons raisonnables de décrire l'univers des résultats possibles, mais le plus simple ici est de considérer, bien que les lancers soient simultanés, que les deux dés sont distinguables et donc que $\Omega = \{(1,1); (1,2); \ldots; (1,6); (2,1); \ldots; (6,6)\}$. Il y a équiprobabilité sur cet univers, ce qui permet de calculer les probabilités à l'aide de quotients de cardinaux. On a alors $A = \{(1,1); (2,2); (3,3); (4,4); (5,5); (6,6)\}$ et $B = \{(1,1); (1,2); (1,3); (2,1); (2,2); (3,1)\}$. On a donc $P(A) = P(B) = \frac{6}{36} = \frac{1}{6}$. Pour la probabilité de l'intersection, il suffit de constater qu'il y a deux cas favorables, donc $P(A \cap B) = \frac{2}{36} = \frac{1}{18}$. Ensuite, on utilise la formule bien connue $P(A \cup B) = P(A) + P(B) - P(A \cap B) = \frac{1}{6} + \frac{1}{6} - \frac{1}{18} = \frac{5}{18} \simeq 0.28$.

Exercice 2 (**)

Cette fois-ci, pas vraiment de choix pour l'univers : $\Omega = \{(1, 1, 1, 1); (1, 1, 1, 2); \dots; (6, 6, 6, 6)\}$. On a $|\Omega| = 6^4 = 1296$.

- 1. Il y a six cas favorables, soit une probabilité de $\frac{6}{6^4} = \frac{1}{216} \simeq 0.0046$.
- 2. Il faut bien entendu faire attention qu fait qu'il ne s'agit pas du complémentaire de la question précédente. Pour avoir quatre chiffres différents, il y a $6 \times 5 \times 4 \times 3 = 360$ cas favorables, soit une probabilité de $\frac{360}{1296} = \frac{5}{18} \simeq 0.28$.
- 3. On peut interpréter de plusieurs façons la question. Le plus simple est de considérer qu'on obtient une des combinaisons suivantes : (1,2,3,4); (2,3,4,5); (3,4,5,6); (4,3,2,1); (5,4,3,2); (6,5,4,3), ce qui laisse la même probabilité qu'à la première question.

Exercice 3 (**)

Si on numérotes les pierres précieuses $(D_1; \ldots; D_{10}; E_1; \ldots; E_{15}; R_1; \ldots; R_{20})$, l'univers est constitué de tous les quadruplets de l'ensemble à 45 éléments précédent. On a donc $|\Omega| = \binom{45}{4} = 148995$.

1. Il faut séparer l'événement (que j'appelle A) en trois possibilités. Notons A_1 l'évènement « on obtient trois diamants » ; A_2 « on obtient trois émeraudes » et A_3 « on obtient trois rubis ». On a $P(A_1) = \frac{\binom{10}{4}}{\binom{45}{4}}$, et de même $P(A_2) = \frac{\binom{15}{4}}{\binom{45}{4}}$ et $P(A_3) = \frac{\binom{20}{4}}{\binom{45}{4}}$. Comme on a $A = A_1 \cup A_2 \cup A_3$, et que les événements A_1 , A_2 et A_3 sont manifestement incompatibles, $P(A) = P(A_1) + P(A_2) + P(A_3) = \frac{\binom{10}{4} + \binom{15}{4} + \binom{20}{4}}{\binom{45}{4}} \simeq 0.043$.

- 2. L'ordre n'ayant pas d'importance, il faut choisir deux diamants parmi les 10 et deux rubis parmi les 20. Le nombre de cas favorables est donc de $\binom{10}{2} \times \binom{20}{2}$. On a donc une probabilité de $\frac{\binom{10}{2} \times \binom{20}{2}}{\binom{45}{2}} \simeq 0.057$.
- 3. Il faut combiner les deux techniques précédentes : on peut avoir soit deux diamants et deux rubis ; soit un diamant, un rubis et donc deux émeraudes ; soit quatre émeraudes, ce qui donne une probabilité de $\frac{\binom{10}{2} \times \binom{20}{2} + \binom{10}{1} \times \binom{20}{1} \times \binom{15}{2} + \binom{15}{4}}{\binom{45}{4}} \simeq 0.207.$

Exercice 4 (**)

On peut obtenir 10 de 6 façons : 1+3+6; 1+4+5; 2+2+6; 2+3+5; 2+4+4 et 3+3+4. On peut obtenir 9 de 6 façons également : 1+2+6; 1+3+5; 1+4+4; 2+2+5; 2+3+4 et 3+3+3. On pourrait penser que les deux sommes ont la même probabilité d'apparition, mais il n'en est rien! Toute la subtilité se situe dans le choix de l'univers : pour être dans un cas d'équiprobabilité, il faut choisir $\Omega = \{(1,1,1); (1,1,2); \dots, (1,2,1); \dots; (6,6,6)\}$, autrement dit tenir compte de l'ordre. Du coup, pour le total de 10, le triplet (1,3,6) contribue en fait pour 6 possibilités (on peut permuter les trois chiffres comme on le souhaite), tout comme (1,4,5) et (2,3,5). Chacun des trois autres triplets ne correspond qu'à 3 possibilités car un des chiffres est répété deux fois. Il y a donc au total 27 cas sur $6^3 = 216$ pour lesquels le total donne 10, soit une probabilité de $\frac{27}{216} = \frac{1}{8} = 0.125$. Pour 9, on obtient de façon similaire 25 cas favorables (trois triplets qui représentent six cas chacun, deux en représentent trois, et le dernier (3,3,3) n'en représente qu'un seul, soit une probabilité de $\frac{25}{216} \simeq 0.116$. On a donc plus de chances d'obtenir 10 que 9.

Exercice 5 (*)

Une représentation sous forme ou, pour faire plus savant, la formule des probabilités composées, permet d'obtenir rapidement les valeurs souhaitées. La robabilité que le premier joueur gagne vaut $\frac{2}{6} = \frac{1}{3}$. Pour le deuxième, il faut que le joueur 1 tire une boule noire, puis que lui-même tire une boule blanche sur les cinq boules restant dans l'urne, soit une probabilité de $\frac{4}{6} \times \frac{2}{5} = \frac{4}{15}$. De même, le troisième joueur gagne avec probabilité $\frac{4}{6} \times \frac{3}{5} \times \frac{2}{4} = \frac{1}{5}$, le quatrième avec une probabilité $\frac{4}{6} \times \frac{3}{5} \times \frac{2}{4} \times \frac{3}{3} = \frac{2}{15}$. Enfin, le dernier joueur gagne avec une probabilité $\frac{4}{6} \times \frac{3}{5} \times \frac{2}{4} \times \frac{1}{3} \times \frac{2}{2} = \frac{1}{15}$. Notons que la somme de ces cinq probabilités vaut $\frac{1}{3} + \frac{4}{15} + \frac{1}{5} + \frac{2}{15} + \frac{1}{15} = \frac{5+4+3+2+1}{15} = 1$, ce qui est tout à fait normal puisqu'il y a quatre boules noires dans l'urne, ce qui implique qu'avec des tirages sans remise, l'un des cinq joueurs va nécessairement tirer une boule blanche.

Exercice 6 (***)

Il y ici deux univers raisonnables pour les résultats. On peut ne pas tenir compte de l'ordre et prendre pour Ω l'ensemble des sous-ensembles à 5 éléments de l'ensemble des 25 boules de l'urne, soit $|\Omega| = \binom{25}{5}$, mais également choisir de travailler avec des arrangements, auquel cas $|\Omega| = 25 \times 24 \times 23 \times 22 \times 21$. Nous choisissons ici le premier univers, constitué de combinaisons.

1. Il y a
$$\binom{15}{5}$$
 tirages favorables, soit une probabilité de $\frac{\binom{15}{5}}{\binom{25}{5}} \simeq 0.057$.

- 2. On a introduit un ordre, il faut changer d'univers ou plus simplement calculer la proba boule par boule (autrement dit à l'aide de la formule des probabilités composées), elle vaut $\frac{15}{25} \times \frac{10}{24} \times \frac{9}{23} \times \frac{14}{22} \times \frac{13}{21} = \frac{39}{1012} \simeq 0.039$.
- 3. On peut revenir à notre premier univers, les tirages favorables sont ceux constituées de cinq boules vertes et ceux constituées de quatre boules vertes et d'une boule blanche (union disjointe), donc la proba vaut $\frac{\binom{15}{4} \times \binom{10}{1} + \binom{15}{5}}{\binom{25}{5}} \simeq 0.313$ (on a séparé l'événement en deux cas disjoints).
- 4. De la même façon que précédemment, la proba vaut $\frac{\binom{15}{3} \times \binom{10}{2}}{\binom{25}{5}} \simeq 0.385$. Dans les deux dernières questions, si on a décidé de travailler avec des arrangements, on fera bien attention au fait que l'ordre des tirages n'est pas imposé dans l'énoncé (contrairement à la deuxième question), ce qui laisse plus de cas favorables.

Dans le cas des tirages avec remise, on est de toute façon obligés de travailler avec des listes, donc $|\Omega|=25^5$.

- 1. Il y a 15⁵ tirages favorables, donc une probabilité de $\frac{15^5}{25^5} = \left(\frac{3}{5}\right)^5 \simeq 0.078$.
- 2. Il y a $15 \times 10 \times 10 \times 15 \times 15$ tirages favorables, soit une probabilité de $\frac{15^3 \times 10^2}{25^5} = \left(\frac{3}{5}\right)^3 \times \left(\frac{2}{5}\right)^2 \simeq 0.035$.
- 3. Soit on obtient cinq vertes (15⁵ cas), soit quatre vertes et une blanche, ce qui correspond à $15^4 \times 10 \times 5$ cas (il ne faut pas oublier de multiplier par 5 pour tenir compte du choix de la position de la boule blanche), donc une probabilité de $\frac{15^5 + 15^4 \times 10 \times 5}{25^5} \simeq 0.337$.
- 4. Là encore, la seule difficulté est de ne pas oublier le choix de la position des deux blanches, la probabilité vaut $\frac{\binom{5}{2} \times 15^3 \times 10^2}{25^5} \simeq 0.346$.

Exercice 7 (**)

Le plus simple est encore de calculer tous les cardinaux possibles. Notons A l'ensemble des anglicistes, G celui les germanistes et E les hispanisants. On sait que |A| = 31; |E| = 24; |G| = 17; $|A \cap G| = 12$; $|G \cap E| = 9$ et $|A \cap E \cap G| = 4$. On en déduit que $|(A \cap G) \setminus E| = 12 - 4 = 8$ (autrement dit, huit élèves étudient anglais et allemand mais pas l'espagnol), et $|(G \cap E) \setminus A| = 9 - 4 = 5$. On en déduit que les germanistes purs sont au nombre de 17 - 8 - 4 - 5 = 0. Autrement, la probabilité demandée à la troisième question est nulle. Restent à caser les 21 élèves restants dans les cases « anglais pur », « espagnol pur » et « anglais + espagnol sans allemand ». Les anglicistes non germanistes sont au nombre de 31 - 8 - 4 = 19, et les hispanisants non germanistes sont 24 - 4 - 5 = 15. Il y a donc 15 + 19 - 21 = 13 élèves pratiquant anglais et espagnol mais pas allemand, ce qui laisse deux espagnols purs et 6 anglais purs. Tous les élèves pratiquand l'anglais ou l'espagnol, la probabilité de la question 2 vaut 1, et celle de la question 1 vaut $\frac{13 + 4}{38} = \frac{17}{38}$.

Exercice 8 (***)

1. Soit A gagne au premier lancer (une chance sur deux), soit il gagne à son deuxième lancer, ce qui implique que lui-même et B aient perdu au premier lancer, c'est-à-dire que les trois premiers lancers soient FPP, ce qui se produit avec probabilité $\frac{1}{8}$; soit il gagne à son troisième

- lancer, probabilité $\frac{1}{32}$ (même raisonnement qu'avant), soit au total une proba de $\frac{1}{2} + \frac{1}{8} + \frac{1}{32} = \frac{21}{32} \simeq 0.656$ (les trois cas étant bien sûr incompatibles).
- 3. Il reste une proba de $\frac{1}{2^{10}} \simeq 0.000098$ que personne n'ait gagné après dix lancers (5 chacun), le seul cas favorable étant FPFPFPFPFPF.
- 4. C'est un calcul de probabilité conditionnelle : la probabilité que A gagne vaut $\frac{1}{2} + \frac{1}{8} + \frac{1}{32} + \frac{1}{128} + \frac{1}{512} = \frac{341}{512}$; la probabilité que quelqu'un ait gagné est le complémentaire de la probabilité calculée à la question précédente, elle vaut $1 \frac{1}{2^{10}} = \frac{1023}{1024}$. La probabilité conditionnelle cherchée est donc de $\frac{341}{512} \times \frac{1024}{1023} = \frac{2}{3}$. Je vous laisse voir pourquoi ce résultat est intuitivement normal.

Exercice 9 (***)

- 1. Puisque tout est distingable, il y a 4 possibilités de rangement pour chaque boule, soit $4^5 = 1$ 024 rangements possibles au total. Autrement dit, $|\Omega| = 1$ 024.
- 2. Il y a quatre rangements pour lesquels toutes les boules sont dans la même boite (un pour chaque boite), soit une probabilité de $\frac{4}{1\ 024} = \frac{1}{256} \simeq 0.004$.
- 3. Commençons par choisir les deux boites non vides, ce qui laisse $\binom{4}{2} = 6$ possibilités. Une fois ce choix effectué, il y a 2^5 façons de caser les cinq boules dans nos deux boites, mais il faut en enlever deux si on veut que nos deux boites ne soient pas vides (les deux pour lesquelles une des deux boites recueille toutes les boules). Cela fait donc finalement $6 \times (2^5 2)$ cas favorables, soit une probabilité de $\frac{6 \times 30}{1\ 024} = \frac{45}{256} \simeq 0.178$.
- 4. On peut répartir les cinq boules comme suit si on veut exactement une boite vide : 3-1-1-0 ou 2-2-1-0. Dans le premier cas, il faut choisir la boite contenant trois boules (4 choix), les trois boules en question $\binom{5}{3} = 10$ choix), la boite contenant la quatrième boule (3 choix) et la boite contenant la dernière boule (2 choix; si on veut on peut remplacer ces derniers choix par le choix des deux boites non vides puis de la boule allant dans la première boite non vide, ce qui revient au même). Il y a donc $4 \times 10 \times 3 \times 2 = 240$ répartitions 3-1-1-0. Pour les 2-2-1-0, il y a 4 choix pour la boite contenant une seule boule, 5 choix pour la boule allant dans cette boite, 3 choix pour la boite vide, et enfin $\binom{4}{2} = 6$ choix pour les deux boules allant dans la première des deux boites restantes, soit $4 \times 5 \times 3 \times 6 = 360$ possibilités. Finalement la probabilité d'avoir exactement une boite vide est de $\frac{360}{1024} = \frac{45}{128} \simeq 0.352$.
- 5. On a calculé successivement les probabilités d'avoir trois, deux et une boite vide. Comme on ne peut pas avoir quatre boites vides, la probabilité de ne pas avoir de boite vide est complémentaire de la somme des précédentes, elle vaut $\frac{1\ 024-4-180-600}{1\ 024} = \frac{240}{1\ 024} = \frac{15}{64} \simeq 0.234.$
- 6. Notons A_1 « La première boite est vide » et ainsi de suite jusqu'à A_4 . Le nombre de cas favorables à A_1 est $3^5 = 243$ (il faut caser les cinq boules dans trois boites), donc $P(A_1) =$

 $\frac{243}{1,024}$. De même pour A_2 , A_3 et A_4 . Par un raisonnement similaire, le nombre de cas favorables à $A_1 \cap A_2$ est $2^5 = 32$, donc $P(A_1 \cap A_2) = \frac{32}{1024}$, et de même pour les autres intersection de deux évènements. Enfin, $P(A_1 \cap A_2 \cap A_3) = \frac{1}{1\ 024}$, et de même pour les autres intersections de trois évènements. Enfin, $A_1 \cap A_2 \cap A_3 \cap A_4$ est impossible. On peut appliquer la formule de Poincaré : $P(A_1 \cup A_2 \cup A_3 \cup A_4) = P(A_1) + P(A_2) + P(A_3) + P(A_4) - P(A_1 \cap A_2) - P(A_1 \cap A_3) - P$ $A_{4}) - P(A_{2} \cap A_{3}) - P(A_{2} \cap A_{4}) - P(A_{3} \cap A_{4}) + P(A_{1} \cap A_{2} \cap A_{3}) + P(A_{1} \cap A_{2} \cap A_{4}) + P(A_{1} \cap A_{3} \cap A_{4}) + P(A_{2} \cap A_{3} \cap A_{4}) - P(A_{1} \cap A_{2} \cap A_{3} \cap A_{4}) = \frac{4 \times 243 - 6 \times 32 + 4 \times 1 - 0}{1 \ 024} = \frac{784}{1 \ 024} = \frac{49}{64}.$ La probabilité cherchée est le complémentaire de celle que nous venons de calculer, on retrouve $\frac{15}{64}$ comme à la question précédente.

Exercice 10 (***)

1. Pour cette question, seul le premier tour nous intéresse. Celui-ci est constituée de 32 matchs faisant s'affronter deux joueurs. Peu importe dans quel ordre ces deux joueurs ont été tirés. Il y a $\binom{64}{2}$ possibilités pour le tirage du premier match, $\binom{32}{2}$ pour le deuxième etc, jusqu'à $\binom{2}{2}$ pour le dernier match. Comme on se fiche de l'ordre des matchs, on peut diviser par 32! (le nombre d'ordres possibles) pour obtenir un total de possibilités de $\frac{64 \times 63}{2} \times \frac{62 \times 61}{2} \times \cdots \times \frac{62 \times 61}{2} \times \frac{62 \times 61}{2} \times \cdots \times \frac{62$ $\frac{2\times 1}{2} \times \frac{1}{32!} = \frac{64!}{2^{32}\times 32!}$ tirages possibles.

Si on ne veut pas que deux têtes de séries se rencontrent, il y 56 choix possibles pour l'adversaire de la première tête de série (8 joueurs sur 64 sont têtes de série, donc 56 ne le sont pas), 55 pour l'adversaire de la deuxième tête de série, etc jusqu'à 49 pour l'adversaire de la huitième tête de série. Il reste ensuite à répartir les 48 concurrents restants en 24 paires, ce qui se fait de $\frac{48!}{2^{24} \times 24!}$ façons (cf le calcul ci-dessus). La probabilité qu'il n'y ait pas de matchs opposant deux têtes de séries vaut donc $\frac{56!}{48!} \frac{48!}{2^{24} \times 24!} \times \frac{2^{32} \times 32!}{64!} = \frac{2^8 \times 25 \times 26 \times \cdots \times 32}{57 \times 58 \times \cdots \times 64} \simeq 0.608$. La

probabilité cherchée est le complémentaire de celle-ci, elle vaut en

2. Cette fois-ci, tout ce qui nous intéresse est que nos huit têtes de série soient dans des huitièmes de tableau différents. Il y a huit huitièmes de tableau constitués chacun de huit joueurs. Si on se fiche de l'ordre à l'intérieur de chaque huitième de tableau et de l'ordre des huitièmes de tableau, il y a $\binom{64}{8} \times \binom{56}{8} \times \cdots \times \binom{8}{8} \times \frac{1}{8!} = \frac{64!}{8! \times 56!} \times \frac{56!}{48! \times 8!} \times \cdots \times \frac{8!}{8! \times 0!} \times \frac{1}{8!} = \frac{64!}{(8!)^9}$ possibilités. Si on impose une tête de série dans chaque huitième de tableau, il reste à répartir les 56 concurrents restants en 8 paquets de 7, ce qui se fait de $\frac{56!}{(7!)^8 \times 8!}$ (calcul très similaire au précédent), et à multiplier par 8! pour distribuer aléatoirement les huit têtes de série dans chacun de ces paquets. La probabilité cherchée vaut $\frac{56!}{(7!)^8} \times \frac{(8!)^9}{64!} = \frac{8^8 \times 8!}{57 \times 58 \times \cdots \times 64} \simeq$ 0.00379. Autant dire que c'est très improbable.

Note du correcteur : on peut faire plus simple pour calculer les probabilités (cf corrigé de l'exercice en TD). Pour la deuxième question, le calcul donnera $\frac{\binom{56}{7}}{\binom{63}{7}} \times \frac{\binom{49}{7}}{\binom{55}{7}} \times \frac{\binom{42}{7}}{\binom{47}{7}} \times \frac{\binom{35}{7}}{\binom{39}{7}} \times \frac{\binom{28}{7}}{\binom{31}{7}} \times \frac{\binom{21}{7}}{\binom{23}{7}} \times \frac{\binom{14}{7}}{\binom{15}{7}}$ qu'on peut simplifier pour retrouver l'expression ci-dessus