Cours : Vecteurs de l'espace avec Exercices avec solutions

VECTEURS DE L'ESPACE

I) DEFINITION: Vecteur de l'espace

Définition : Soient A, B deux points dans l'espace \mathcal{E}

Si A et Bsont distinctes alors Pour tout point M dans l'espace \mathcal{E} il existe un point unique N dans l'espace \mathcal{E} tel que :MABN est un

parallélogramme et est écrit : $\vec{u} = \overrightarrow{AB} = \overrightarrow{MN}$ Si A et B sont confondues alors : $\vec{0} = \overrightarrow{AA} = \overrightarrow{MN}$ (vecteur nul)

Remarques :Si O un point dans l'espace \mathcal{E} alors pour tout vecteur \vec{u} de l'espace il existe un point unique M dans l'espace \mathcal{E} tel que : $\overrightarrow{OM} = \overrightarrow{u}$ L'application : $\varphi: \mathcal{E} \to V_3$

 $M \mapsto \overrightarrow{OM} = \overrightarrow{u}$ est une bijection

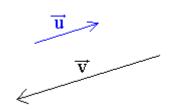
L'ensemble des vecteurs se note V_3

Un vecteur non $nul_{\vec{u}} = \overrightarrow{AB}$ est caractérisé par : Sa direction : c'est la direction de la droite (AB)

Son sens : de A a B Sa norme : $\|\vec{u}\| = \|\overrightarrow{AB}\| = AB$

Deux vecteurs sont égaux s'ils ont la même direction, le même sens, la même norme.

Deux vecteurs peuvent avoir la même direction de tels vecteurs sont colinéaires



AB = MN ssi ABNM est un parallélogramme II) LES OPERATIONS DANS V_3 .

1) L'addition.

Définition : u et v deux vecteurs non nuls de V_3 ; Soient les points O: A; B

tel que $\vec{u} = \overrightarrow{OB}$ et $\vec{v} = \overrightarrow{OC}$

la somme des deux vecteurs \vec{u} et \vec{v} est le vecteur $\overrightarrow{u} + \overrightarrow{v} = \overrightarrow{OD}$ tel que : OBDC est un parallélogramme

u+v=OB+OC=OD

Propriété :L'addition dans V_3 a les propriétés suivantes:

L'addition dans V_3 est **commutative** :

 $\forall \vec{u} \in V_3 \text{ et } \forall \vec{v} \in V_3 \vec{u} + \vec{v} = \vec{v} + \vec{u}$

L'addition dans V_3 est **associative** $\forall u \in V_3$ et

 $\forall \vec{v} \in V_3 \text{ et } \forall \vec{w} \in V_3$

 $(\vec{u} + \vec{v}) + \vec{w} = \vec{v} + (\vec{u} + \vec{w})$

 $\vec{0}$ Est l'élément neutre pour l'addition dans

 $V_3 \cdot \forall \vec{u} \in V_3 : \vec{u} + \vec{0} = \vec{0} + \vec{u} = \vec{u}$

Tout vecteur $\stackrel{.}{u}$ de V_3 admet un **opposé**

noté $-\vec{u}$: $\vec{u} + (-\vec{u}) = (-\vec{u}) + \vec{u} = \vec{0}$

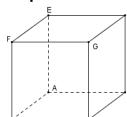
Puisque la somme de de deux vecteurs vérifie les quatre propriétés précédentes on dit que : $(V_3, +)$ est un groupe commutatif.

Soient u et v deux vecteurs de V_3 la différence des deux vecteurs

u et v est la somme de u et de $(-\vec{u})$ et se note : $\vec{u} - \vec{v}$

et on a donc : u-v=u+(-v)

Exemple:



ABCDEFGH un cube on pose:

Simplifier: $\overrightarrow{t} = \overrightarrow{DC} + \overrightarrow{DE} + \overrightarrow{FH}$

Solution:

On a : $\overrightarrow{AB} = \overrightarrow{DC}$

 $\vec{t} = \overrightarrow{DC} + \overrightarrow{DE} + \overrightarrow{FH} = \overrightarrow{AB} + (\overrightarrow{DA} + \overrightarrow{AE}) + \overrightarrow{FH}$

(Relation de Chasles)

 $\overrightarrow{t} = \overrightarrow{DA} + \overrightarrow{AB} + \overrightarrow{AE} + \overrightarrow{FH} = \overrightarrow{DB} + \overrightarrow{AE} + \overrightarrow{BD}$ Car $\overrightarrow{FH} = \overrightarrow{BD}$ (FHDB est un parallélogramme) $\overrightarrow{t} = \overrightarrow{BD} + \overrightarrow{DB} + \overrightarrow{AE} = \overrightarrow{BB} + \overrightarrow{AE} = \overrightarrow{0} + \overrightarrow{AE} = \overrightarrow{AE}$

2) Produit d'un vecteur par un réel.

Définition: $\forall u \in V_3$ et $\forall v \in V_3$

Soit *u* un vecteur non nul et *k* un réel non nul et on pose : $\vec{u} = \overrightarrow{AB}$

sur la droite (AB) il existe un seul point C tel que AC = ku

Le vecteur $\vec{v}=k\overrightarrow{AB}=k\overrightarrow{u}$ s'appelle le produit du réel k et du vecteur \overrightarrow{u}

on pose pour tout k dans $\mathbb R$:

$$k\vec{0} = \vec{0}$$
 et $\forall \vec{u} \in V_3$ $0\vec{u} = \vec{0}$

on a:
$$k\vec{u} = \vec{0} \Leftrightarrow \vec{u} = \vec{0}$$
 ou $k = 0$

Propriété :Le produit d'un vecteur par un réel a les propriétés suivantes :

$$\forall \vec{u} \in V_3 \text{ et } \forall \vec{v} \in V_3 \text{ et } \forall \alpha \in \mathbb{R} \forall \beta \in \mathbb{R}$$

1)
$$\alpha(\vec{u} + \vec{v}) = \alpha \vec{u} + \alpha \vec{v}$$
 2) $(\alpha + \beta)\vec{u} = \alpha \vec{u} + \beta \vec{u}$

3)
$$1\vec{u} = \vec{u}$$

4)
$$\alpha (\beta \vec{u}) = (\alpha \beta) \vec{u}$$

Puisque (V_3 , +) est un groupe commutatif et le produit d'un réel par un vecteur vérifie les quatre propriétés précédente on dit que :

 $(V_3, +, .)$ est un espace vectoriel réel.

Remarque:

 $\forall \vec{u} \in V_3 \text{ et } \forall \vec{v} \in V_3 \text{ et } \forall \alpha \in \mathbb{R} \forall \beta \in \mathbb{R}$

1)
$$\alpha(\vec{u} - \vec{v}) = \alpha \vec{u} - \alpha \vec{v}$$
 2) $(\alpha - \beta)\vec{u} = \alpha \vec{u} - \beta \vec{u}$

3)
$$\alpha \left(-\beta \vec{u}\right) = \left(-\alpha\right) \left(\beta \vec{u}\right) = -\alpha \beta \vec{u}$$

III) VECTEURS COLINEAIRES.

1) Vecteur colinéaires

Définition :On dit que deux vecteurs \vec{u} et \vec{v} sont colinéaires s'il existe un réel k tel que : $\vec{v} = k$. \vec{u}

Remarque :Tout vecteur est colinéaire avec luimême : $\vec{u} = k$. \vec{u}

Tout vecteur est colinéaire avec $\vec{0}$

 $car : \vec{u} \cdot 0 = \vec{0}$

On a : $\vec{u} = \overrightarrow{AB}$ et $\vec{v} = \overrightarrow{CD}$ alors \vec{u} et \vec{v} sont colinéaires ssi $(AB) \parallel (CD)$

Si \vec{u} et \vec{v} sont non colinéaires alors \vec{u} et \vec{v} sont non nuls

A et B et C non alignés ssi \overrightarrow{AB} et \overrightarrow{AC} sont colinéaires

A et B et C non alignés $\Leftrightarrow \exists k \in \mathbb{R} / \overrightarrow{AC} = k \overrightarrow{AB}$ **Exemple :**ABCDEFGH un cube et K milieu du segment [EF] et L milieu du segment [CF] et M un point du segment [CD] tel que :

$$\overrightarrow{CM} = \frac{1}{4}\overrightarrow{CD}$$
 Montrer que : $(ML) || (DK)$

Solution: en utilisant la Relation de Chasles

On a : $\overrightarrow{ML} = \overrightarrow{CL} - \overrightarrow{CM}$ et puisque : L milieu du

segment [CF] Alors : $\overrightarrow{CL} = \frac{1}{2}\overrightarrow{CF}$

donc:
$$\overrightarrow{ML} = \frac{1}{2} \left(\overrightarrow{CF} - \frac{1}{2} \overrightarrow{CD} \right)$$
 (1)

D'autre part On a : $\overrightarrow{CK} = \overrightarrow{CF} + \overrightarrow{FK}$ et

 $\overrightarrow{DK} = \overrightarrow{CK} - \overrightarrow{CD}$ Donc: $\overrightarrow{DK} = \overrightarrow{CF} + \overrightarrow{FK} - \overrightarrow{CD}$

et puisque : K milieu du segment [EF]

Alors:
$$\overrightarrow{FK} = \frac{1}{2}\overrightarrow{FE}$$
 donc: $\overrightarrow{FK} = \frac{1}{2}\overrightarrow{CD}$ (car: $\overrightarrow{FE} = \overrightarrow{CD}$)

Donc:
$$\overrightarrow{DK} = \overrightarrow{CF} + \frac{1}{2}\overrightarrow{CD} - \overrightarrow{CD} = \overrightarrow{CF} - \frac{1}{2}\overrightarrow{CD}$$
 (2)

De (1) et (2) on a :
$$\overrightarrow{ML} = \frac{1}{2}\overrightarrow{DK}$$

donc \overrightarrow{DK} et \overrightarrow{ML} sont colinéaires

Donc: (ML) || (DK)

Propriété: Si on a : $\vec{au} + \vec{bv} = \vec{0}$ avec

 $a \neq 0$ ou $b \neq 0$ alors u et v sont colinéaires

Exemple: *u* et *v* deux vecteurs non colinéaires

Déterminer les réels x et y tels que :

$$x(\vec{u}+2\vec{v})+y(\vec{u}+3\vec{v})=2\vec{u}+5\vec{v}$$

Solution:
$$x(\vec{u}+2\vec{v})+y(\vec{u}+3\vec{v})=2\vec{u}+5\vec{v} \Leftrightarrow$$

$$(x+y-2)\vec{u} + (2x+3y-5)\vec{v} = \vec{0} \Leftrightarrow \begin{cases} x+y-2=0\\ 2x+3y-5=0 \end{cases}$$

$$\Leftrightarrow \begin{cases} x + y = 2 \\ 2x + 3y = 5 \end{cases} \Leftrightarrow \begin{cases} x = 1 \\ y = 1 \end{cases}$$

2) Droite vectorielle

Définition: Soit u un vecteur non nul, l'ensemble des vecteurs colinéaires avec le vecteur u s'appelle : la droite vectorielle

engendrée par le vecteur \vec{u} et se note $\Delta_{\vec{u}}$

$$\Delta_{\vec{u}} = \left\{ \vec{v} \in V_3 \, / \, \exists k \in \mathbb{R} \, / \, \vec{v} = k\vec{u} \right\}$$

 $\Delta_{\vec{u}} = \Delta_{\vec{v}} \iff \vec{u} \ et \ \vec{v} \ \text{sont colinéaires}$

Si \vec{u} et \vec{v} ne sont pas colinéaires alors $\Delta_{\vec{u}} \cap \Delta_{\vec{v}} = \{\vec{0}\}$

3) Détermination vectorielle d'une droite

Définition : Soient u un vecteur non nulle et A un point de l'espace affine \mathcal{E} . L'ensemble des points M dans l'espace \mathcal{E} qui vérifient $\overrightarrow{AM} = \overrightarrow{ku}$

où k est un réel s'appelle la droite qui passe par A et de vecteur directeur \vec{u} . On la note par $D\left(A;\vec{u}\right)$:

$$D(A; \vec{u}) = \{M \in \varepsilon / \exists k \in \mathbb{R} / \overrightarrow{AM} = k\vec{u}\}$$

Remarque:

- Le couple (A, u) détermine un repère sur la droite D(A; u)
- Tout vecteur non nul et colinéaire avec \vec{u} est aussi vecteur Directeur de la droite $D(A; \vec{u})$

IV) VECTEURS COPLANAIRES. 1) vecteurs coplanaires.

Rappelle:

Un plan est défini par :

- □Trois points non alignés
- □ Deux droites sécantes ou strictement parallèles.
- ☐ Une droite et un point extérieur à cette droite.

Définition: Soient \vec{u} , \vec{v} et \vec{w} trois vecteurs et \vec{A} un point l'espace

on pose $\overrightarrow{AB} = \overrightarrow{u}$ $\overrightarrow{AC} = \overrightarrow{v}$ et $\overrightarrow{AD} = \overrightarrow{w}$

On dit que : les vecteurs u , v et w sont coplanaires ssi les points A, B ; C et D sont coplanaires

Propriété: Soient \vec{u} , \vec{v} et \vec{w} trois vecteurs dans l'espaces vectoriel

Les vecteurs \vec{u} , \vec{v} et \vec{w} sont coplanaires si et seulement s'ils existent deux réels \vec{x} et \vec{y} tels que $\vec{w} = \vec{xu} + \vec{yv}$

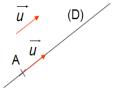
Remarque : si \vec{u} , \vec{v} sont deux vecteurs colinéaires alors les vecteurssont \vec{w} et \vec{v} et \vec{u} coplanaires

2) Plan vectoriel

Définition: Soient u, v deux vecteurs non colinéaires; l'ensemble des vecteurs \overrightarrow{w} dans V_3 qui s'écrivent de la forme : $\overrightarrow{w} = x\overrightarrow{u} + y\overrightarrow{v}$ où x et y sont des réels s'appelle le plan vectoriel engendré par \overrightarrow{u} , \overrightarrow{v} 3) Détermination vectoriel d'un plan.

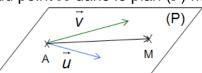
Définition : Soient \overrightarrow{u} , \overrightarrow{v} deux vecteurs non colinéaires et A un point de l'espace \mathcal{E} l'ensemble des point M dans l'espace qui

vérifient $\overrightarrow{AM} = x\overrightarrow{u} + y\overrightarrow{v}$ est le plan qui passe par A et de vecteurs directeurs \overrightarrow{u} , \overrightarrow{v} , on le note par : $P(A; \vec{u}; \vec{v})$



$$P(A; \vec{u}; \vec{v}) = \{ M \in \varepsilon / \exists x \in \mathbb{R} : \exists y \in \mathbb{R} / \overrightarrow{AM} = x\vec{u} + y\vec{v} \}$$

Le triplet $R(A; \vec{u}; \vec{v})$ s'appelle un repère du plan (P) et le couple (x, y) s'appelle les coordonnées du point M dans le plan (P) muni du repère R



Exemple :ABCDEFGH un parallélépipède de centre O et I milieu du segment $\lceil AD \rceil$

on pose $\overrightarrow{EG} = \overrightarrow{u}$ $\overrightarrow{FC} = \overrightarrow{v}$ et $\overrightarrow{IO} = \overrightarrow{w}$

Montrer que : \vec{u} , \vec{v} et \vec{w} sont coplanaires

Solution : On a : $\overrightarrow{EG} = \overrightarrow{u}$ et on a $\overrightarrow{EG} = \overrightarrow{AC}$

donc $\overrightarrow{AC} = \overrightarrow{u}$

On considère le triangle ADF

et puisque : I milieu du segment [AD]

et O milieu du segment $\lceil FD \rceil$

on trouve : $\overrightarrow{IO} = \frac{1}{2}\overrightarrow{AF}$ Donc : $\overrightarrow{IO} = \overrightarrow{AK}$

et puisque : K milieu du segment $\lceil AF \rceil$

cad $\overrightarrow{AK} = \overrightarrow{w}$

et On considérons le point L tel que AFCL est un parallélogramme on trouve : $\vec{v} = \overrightarrow{AL}$

Alors: $\overrightarrow{AC} = \overrightarrow{u}$ et $\overrightarrow{v} = \overrightarrow{AL}$ et $\overrightarrow{AK} = \overrightarrow{w}$

Donc: u , v et w sont coplanaires

Exemple: ABCDEFGH un cube

M milieu du segment [HE]et et N milieu du segment [HG]

Les vecteurs \overrightarrow{MN} , \overrightarrow{CH} et \overrightarrow{AC} sont-ils coplanaires ? justifier

Solution : On considérons le triangle HEG et puisque : M milieu du segment $\lceil HE \rceil$ N milieu

du segment [HG] on trouve : $\overrightarrow{EG} = 2\overrightarrow{MN}$

et puisque $\overrightarrow{EG} = \overrightarrow{AC}$: alors $\overrightarrow{AC} = 2\overrightarrow{MN}$ donc Les vecteurs \overrightarrow{MN} et \overrightarrow{AC} sont colinéaires et par suite Les vecteurs \overrightarrow{MN} , \overrightarrow{CH} et \overrightarrow{AC} sont coplanaires

V) PARALLELISME DANS L'ESPACE

1) Parallélisme de deux droites

Définition : Soient \vec{u} , \vec{v} deux vecteurs et et A et B deux points de l'espace

1)
$$D(A; \vec{u}) || D(B; \vec{v}) \iff \vec{u}, \vec{v} \text{ sont colinéaires}$$

2) A et B et C et D des points tels que :
$$A \neq B$$
 et $C \neq D$: $(AB) || (CD) \Leftrightarrow \exists k \in \mathbb{R}; \overrightarrow{CD} = \overrightarrow{AB}$

Exercice 01: ABCD un tétraèdre et E le milieu du $\begin{bmatrix} BC \end{bmatrix}$ et soit les points Q; P; N; M tel que : $\overrightarrow{AN} = 2\overrightarrow{AD}$ $\overrightarrow{CO} = 3\overrightarrow{CB}$ $\overrightarrow{CP} = 3\overrightarrow{CD}$ $\overrightarrow{AM} = 2\overrightarrow{AB}$

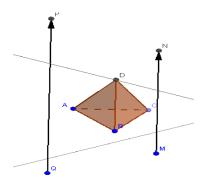
1)Tracer une figure

2) Ecrire
$$\overrightarrow{MN}$$
 et \overrightarrow{PQ} en fonction de \overrightarrow{BD}

3)En déduire que
$$\overrightarrow{MN}$$
 et \overrightarrow{PQ} sont colinéaires

4)Que peut-on dire des droites
$$(MN)$$
 et (PQ)

Solution:1)



2)
$$\overrightarrow{MN} = \overrightarrow{MA} + \overrightarrow{AN} = -\overrightarrow{AM} + \overrightarrow{AN} = -2\overrightarrow{AB} + 2\overrightarrow{AD}$$

 $\overrightarrow{MN} = 2\overrightarrow{BA} + 2\overrightarrow{AD} = 2(\overrightarrow{BA} + \overrightarrow{AD}) = 2\overrightarrow{BD}$

$$\overrightarrow{PQ} = \overrightarrow{PC} + \overrightarrow{CQ} = -\overrightarrow{CP} + \overrightarrow{CQ} = -3\overrightarrow{CD} + 3\overrightarrow{CB} = -3\left(\overrightarrow{CD} - \overrightarrow{CB}\right)$$

$$\overrightarrow{PQ} = -3(\overrightarrow{CD} + \overrightarrow{BC}) = -3(\overrightarrow{BC} + \overrightarrow{CD}) = -3\overrightarrow{BD}$$

3) on a
$$\overrightarrow{MN} = 2\overrightarrow{BD}$$
 donc $\overrightarrow{BD} = \frac{1}{2}\overrightarrow{MN}$ •

on a
$$\overrightarrow{PQ} = -3\overrightarrow{BD}$$
 donc $\overrightarrow{BD} = -\frac{1}{3}\overrightarrow{PQ}$ 2

de
$$\bullet$$
 et \bullet on trouve : $\frac{1}{2}\overrightarrow{MN} = -\frac{1}{3}\overrightarrow{PQ}$ donc $\overrightarrow{MN} = -\frac{2}{3}\overrightarrow{PQ}$

donc : \overrightarrow{MN} et \overrightarrow{PQ} sont colinéaires

4) on a \overrightarrow{MN} et \overrightarrow{PQ} sont colinéaires

Donc (MN) et (PQ) sont parallèles

Exercice02 : ABCD un tétraèdre et E le milieu du $\begin{bmatrix} BC \end{bmatrix}$ et soit les points K ; L tel que :

$$\overrightarrow{CL} = \frac{1}{2} \left(\overrightarrow{AB} + \overrightarrow{AC} \right) \text{ et } \overrightarrow{DK} = \frac{1}{4} \overrightarrow{CB} - \frac{1}{2} \overrightarrow{AD}$$

Montrer que (LD) || (EK)

Solution: pour montrer que(LD)||(EK) il suffit

de montrer que : \overrightarrow{LD} , \overrightarrow{EK} sont colinéaires ??

On a : $\overrightarrow{DK} = \frac{1}{4} \overrightarrow{CB} - \frac{1}{2} \overrightarrow{AD}$ on utilisant la Relation de

Chasles

Donc:
$$\overrightarrow{AK} - \overrightarrow{AD} = \frac{1}{4} \overrightarrow{AB} - \frac{1}{4} \overrightarrow{AC} - \frac{1}{2} \overrightarrow{AD}$$

Donc:
$$\overrightarrow{EK} = \left(\frac{1}{4}\overrightarrow{AB} - \frac{1}{4}\overrightarrow{AC} + \frac{1}{2}\overrightarrow{AD}\right) - \frac{1}{2}\left(\overrightarrow{AB} + \overrightarrow{AC}\right)$$
 et

puisque :
$$\overrightarrow{EK} = \overrightarrow{AK} - \overrightarrow{AE}$$

Donc:
$$\overrightarrow{EK} = \left(\frac{1}{4}\overrightarrow{AB} - \frac{1}{4}\overrightarrow{AC} + \frac{1}{2}\overrightarrow{AD}\right) - \frac{1}{2}\left(\overrightarrow{AB} + \overrightarrow{AC}\right)$$

Alors:
$$\overrightarrow{EK} = \frac{1}{4}\overrightarrow{AB} - \frac{1}{4}\overrightarrow{AC} + \frac{1}{2}\overrightarrow{AD}$$

On a:
$$\overrightarrow{AL} = \overrightarrow{AC} + \overrightarrow{CL} = \overrightarrow{AC} + \frac{1}{2}\overrightarrow{AB} + \frac{1}{2}\overrightarrow{AC} = \frac{1}{2}\overrightarrow{AB} + \frac{3}{2}\overrightarrow{AC}$$

et puisque :
$$\overrightarrow{LD} = \overrightarrow{AD} - \overrightarrow{AL} = -\frac{1}{2} \overrightarrow{AB} - \frac{3}{2} \overrightarrow{AC} + \overrightarrow{AD}$$

de **0** et **2** on déduit que :
$$\overrightarrow{EK} = \frac{1}{2}\overrightarrow{LD}$$

donc: (LD)||(EK)

2) Parallélisme d'une droite et d'un plan.

Propriété :La droite $D(A; \vec{u})$ et le plan P

 $P(B; \vec{v}; \vec{w})$ sont parallèles si et seulement si les

vecteurs \vec{u} , \vec{v} et \vec{w} sont coplanaires

$$D(A; \vec{u}) || P(B; \vec{v}; \vec{w}) \Leftrightarrow \exists x \in \mathbb{R} : \exists y \in \mathbb{R} / \vec{u} = x\vec{v} + y\vec{w}$$

Exemple: ABCDEFGH un cube

K est le symétrique du point D par rapport a H Montrer que $(AK) \parallel (BCG)$

Solution : on a : $\overrightarrow{AK} = \overrightarrow{AD} + 2\overrightarrow{DH} = \overrightarrow{BC} + 2\overrightarrow{CG}$

donc : Les vecteurs \overrightarrow{AK} , \overrightarrow{CB} et \overrightarrow{CG} sont coplanaires

on déduit que : $\exists x \in \mathbb{R} : \exists y \in \mathbb{R} / \overrightarrow{AK} = x\overrightarrow{CB} + y\overrightarrow{CG}$

donc: (AK)||(BCG)

3) Parallélisme de deux plans

Propriété: Deux plans $P(A; \vec{u}; \vec{v})$ et $Q(B; \vec{u'}; \vec{v'})$

sont parallèles si et seulement si

 \vec{u} , \vec{v} et $\vec{u'}$ sont coplanaires et \vec{u} , \vec{v} et $\vec{v'}$ sont coplanaires aussi

Remarque :Une seule condition n'est pas suffisante