LE CERCLE

Etude analytique

Dans tout ce qui va suivre le plan (\mathcal{P}) est rapporté à un repère $\mathcal{R}(0,\vec{\imath},\vec{j})$ orthonormé.

I) EQUATION D'UN CERCLE

Définition:

Soient Ω un point et r un réel positif, le cercle de centre Ω et de rayon r est l'ensemble des points M dans le plan (\mathcal{P}) qui vérifient : $\Omega M = r$ on le note, $\mathcal{C}_{(\Omega,r)}$

$$\mathcal{C}_{(\Omega,r)} = \{ M \in (\mathcal{P}) / \Omega M = r \}$$

Remarque:

On peut considérer le point comme étant un cercle de rayon nul.

1) Cercle défini par son centre et son rayon.

Soient $\Omega(a, b)$ un point et r un réel positif,

$$M(x,y) \in \mathcal{C}_{(\Omega,r)} \iff \Omega M = r$$

 $\iff \Omega M^2 = r^2$
 $\iff (x-a)^2 + (y-b)^2 = r^2$

Propriété:

Soient $\Omega(a,b)$ un point et r un réel positif, le cercle $\mathcal{C}_{(\Omega,r)}$ à une équation cartésienne de la forme :

$$C_{(\Omega,r)}$$
: $(x-a)^2 + (y-b)^2 = r^2$

2) Equation réduite d'un cercle

On a:

$$\begin{split} M(x,y) &\in \mathcal{C}_{(\Omega,r)} \Longleftrightarrow (x-a)^2 + (y-b)^2 = r^2 \\ &\iff x^2 - 2ax + a^2 + y^2 - 2by + b^2 - r^2 = 0 \\ &\iff x^2 + y^2 + \alpha x + \beta y + \gamma = 0 \quad \text{ où : } \alpha = -2a \ ; \beta = -2b \text{ et } \gamma = a^2 + b^2 - r^2 \end{split}$$

Propriété :

Tout cercle dans le plan à une équation de la forme : $x^2 + y^2 + \alpha x + \beta y + \gamma = 0$ où α , β et γ sont des réels.

Inversement:

Soient α , β et γ trois réels et $(\Gamma) = \{M(x,y) \in (\mathcal{P})/x^2 + y^2 + \alpha x + \beta y + \gamma = 0\}$ déterminons en fonction des réels α , β et γ la nature de l'ensemble (Γ) .

$$M(x,y) \in (\Gamma) \Leftrightarrow x^2 + y^2 + \alpha x + \beta y + \gamma = 0$$

$$\Leftrightarrow \left(x + \frac{\alpha}{2}\right)^2 - \frac{\alpha^2}{4} + \left(y + \frac{\beta}{2}\right)^2 - \frac{\beta^2}{4} + \gamma = 0$$

$$\Leftrightarrow \left(x + \frac{\alpha}{2}\right)^2 + \left(y + \frac{\beta}{2}\right)^2 = \frac{\beta^2}{4} + \frac{\alpha^2}{4} - \gamma$$

$$\Leftrightarrow \left(x + \frac{\alpha}{2}\right)^2 + \left(y + \frac{\beta}{2}\right)^2 = \frac{\alpha^2 + \beta^2 - 4\gamma}{4}$$

$$ightharpoonup$$
 Si $\frac{\alpha^2 + \beta^2 - 4\gamma}{4} < 0$ alors $(\Gamma) = \emptyset$

> Si
$$\frac{\alpha^2 + \beta^2 - 4\gamma}{4} = 0$$
 alors (Γ) = $\left\{ \Omega\left(\frac{-\alpha}{2}, \frac{-\beta}{2}\right) \right\}$

$$\begin{array}{ll} \triangleright & \text{Si} & \frac{\alpha^2 + \beta^2 - 4\gamma}{4} < 0 & \text{alors } (\Gamma) = \emptyset \\ \\ \triangleright & \text{Si} & \frac{\alpha^2 + \beta^2 - 4\gamma}{4} = 0 & \text{alors } (\Gamma) = \left\{\Omega\left(\frac{-\alpha}{2}, \frac{-\beta}{2}\right)\right\} \\ \\ \triangleright & \text{Si} & \frac{\alpha^2 + \beta^2 - 4\gamma}{4} > 0 & \text{alors } (\Gamma) = \mathcal{C}_{\left(\Omega, \sqrt{\rho}\right)} & \text{où } \Omega\left(\frac{-\alpha}{2}, \frac{-\beta}{2}\right) \text{ et } \rho = \frac{\alpha^2 + \beta^2 - 4\gamma}{4} \end{array}$$

Exercice 1:

Déterminer les ensembles :

$$(\Gamma_1) = \{ M(x, y) \in (\mathcal{P})/x^2 + y^2 - 2x + y + 1 = 0 \}$$

$$(\Gamma_2) = \{ M(x, y) \in (\mathcal{P})/x^2 + y^2 - x + 2y + 4 = 0 \}$$

Exercice 2:

Soit l'ensemble : $(\Gamma_m) = \{M(x,y) \in (\mathcal{P})/x^2 + y^2 - 2mx + 4my + 4m^2 - 1 = 0\}$ où m est un réel.

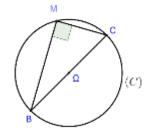
- 1- Montrer que pour tout m dans $\mathbb R$, l'ensemble (Γ_m) est un cercle et déterminer ses éléments.
- 2- Déterminer l'équation cartésienne du plus petit cercle (Γ_m) .
- 3- Déterminer l'ensemble dans lequel varient les centres Ω_m quand m décrit $\mathbb R$
- 4- a) Déterminer pour quelles valeurs de m le point A(-1,2) appartient-il à (Γ_m) .
 - b) Soit $M_0(x_0, y_0)$ un point donné dans le plan, existent-ils toujours des réels m qui vérifient $M_0 \in (\Gamma_m)$
- 5- Déterminer s'il existe l'intersection de tous les cercles (Γ_m) .

3) Cercle définie par son diamètre.

Propriété : (Rappelle)

Soient A et B deux points distincts dans le plan l'ensemble des points Mqui vérifient \overrightarrow{MA} . $\overrightarrow{MB} = 0$ est le cercle de diamètre AB].

Ce qui nous permet d'énoncer la propriété suivante :



Propriété :

Soient $A(x_A, y_A)$ et $B(x_B, y_B)$ deux points distincts dans le plan, le cercle de diamètre [AB] à pour équation : $(x - x_A)(x - x_B) + (y - y_A)(y - y_B) = 0$

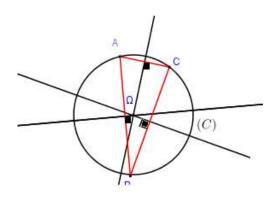
4) Cercle circonscrit à un triangle.

Soit ABC un triangle, les médiatrices du triangle ABC se coupent en Ω le centre du cercle qui conscrit le triangle ABC

Exercice:

Soient les points A(-1,0), B(1,2) et C(5,-2)

- 1- Montrer que les points A, B et C ne sont pas alignés
- 2- Ecrire l'équation du cercle circonscrit au triangle ABC.



II) L'INTERIEUR ET L'EXTERIEUR D'UN CERCLE.

Définition:

Soit $\mathcal{C}_{(\Omega,r)}$ un cercle dans le plan.

- L'ensemble des points M dans le plan qui vérifient $\Omega M \leq r$ s'appelle la boule fermée de centre Ω et de rayon r, il s'appelle aussi l'intérieur du cercle $\mathcal{C}_{(\Omega,r)}$.
- L'ensemble des points M dans le plan qui vérifient $\Omega M > r$ s'appelle l'extérieur du cercle $\mathcal{C}_{(\Omega,r)}$.

Application : La résolution graphique de quelques systèmes d'inéquation

Exemple:

Nous allons résoudre graphiquement le système : (Σ): $\begin{cases} x^2 + y^2 - 2x - 4y + \frac{11}{4} < 0 \\ x^2 + y^2 + 2x - 4 > 0 \end{cases}$

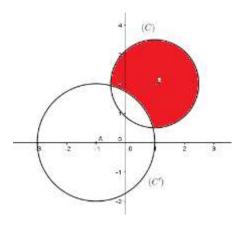
$$x^2 + y^2 - 2x - 4y + \frac{11}{4} = 0$$
 est l'équation du cercle (\mathcal{C})

de centre B(1,2) et de rayon $r = \frac{3}{2}$

$$x^2 + y^2 + 2x - 4 = 0$$
 est l'équation du cercle (C')

de centre A(-1,0) et de rayon r'=2.

L'ensemble des points M qui vérifient est l'extérieur de (\mathcal{C}') intersection l'intérieur de (\mathcal{C})



Exercices:

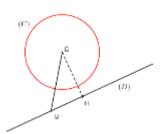
Résoudre graphiquement $(x^2 + y^2 - 4x - 6y + 9)(2x - y + 1) \le 0$

III) POSITIONS RELATIVES D'UN CERCLE EST D'UNE DROITE.

1) Propriété

Soit $\mathcal{C}_{(\Omega,r)}$ un cercle de rayon r strictement positif et (D) une droite dans le plan. Pour étudier les positions relatives du cercle $\mathcal{C}_{(\Omega,r)}$ de (D), il suffit de déterminer la distance de Ω à (D). soit H la projection orthogonal de Ω sur (D)

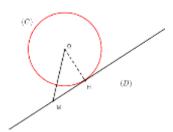
$$d(\Omega,(D)) = \Omega H > r$$



Soit M un point de la droite (D) on a : $\Omega M \geq \Omega H > r \text{ donc tout point de la}$ droite (D) est strictement à l'extérieure du cercle (\mathcal{C})

$$(\mathcal{C}) \cap (D) = \emptyset$$

$$d(\Omega_r(D)) = \Omega H = r$$



Puisque $\Omega H = r$ alors H est un point commun entre (D) et (\mathcal{C}) .

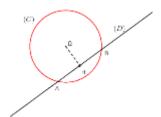
Soit M un point de la droite (D) différent de H on a :

$$\Omega M > \Omega H = r$$

donc tout point de la droite (D) différent de H est strictement à l'extérieure du cercle (C).

$$(\mathcal{C}) \cap (D) = \{H\}$$

 $d(\Omega,(D)) = \Omega H < r$



Dans ce cas le cercle (C) et la droite (D) se coupent en deux points A et B et H est le milieu du segment [AB]

2) Droite tangente à un cercle.

2.1 Définition

Dans tous ce qui suit le rayon du cercle est strictement positif.

Définition:

Une droite (D) est dite tangente à un cercle (C) s'ils se coupent en un seul point.

Propriété:

Une droite (D) est dite tangente au cercle $\mathcal{C}_{(\Omega,r)}$ si et seulement si $d(\Omega,(D))=r$

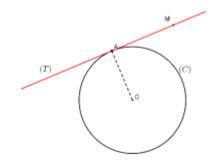
2.2 Equation de la tangente à un cercle en un de ses points.

Soit $\mathcal{C}_{(\Omega,r)}$ un cercle dans le plan où $\Omega(a,b)$ et A l'un de ses points.

Soit la droite (T) la tangente à $\mathcal{C}_{(\Omega,r)}$ en A

$$M(x, y) \in (T) \Leftrightarrow \overrightarrow{AM}. \overrightarrow{A\Omega} = 0$$

 $\Leftrightarrow (x - x_A)(y - y_A) + (a - x_A)(b - y_A) = 0$



Propriété:

Soient $\Omega(a,b)$ un point et $\mathcal{C}_{(\Omega,r)}$ un cercle dans le plan et A l'un de ses points. La droite (T) tangente à $\mathcal{C}_{(\Omega,r)}$

en
$$A$$
 à pour équation : $(x - x_A)(y - y_A) + (a - x_A)(b - y_A) = 0$

Application:

Soit (\mathcal{C}) le cercle d'équation : $x^2 + y^2 - 2x - 2y - 6 = 0$

1- Vérifier que le point A(3,-1) appartient au cercle (\mathcal{C}) .

2- Ecrire l'équation de la tangente au cercle (\mathcal{C}) en A.

2.3 Tangente à un cercle (\mathcal{C}) passante par un point à l'extérieure de (\mathcal{C})

Exercice:

Soient le cercle (C): $(x-2)^2 + (y-1)^2 = 4$ et A(5,6)

1- Vérifier que le point A est à l'extérieur de (C)

2- a)Déterminer l'équation de la droite (δ) passante par A et parallèle à l'axe des ordonnées.

b) Vérifier que (δ) n'est pas tangente à (\mathcal{C}) .

3- Soit (Δ) une droite qui passe par A et qui n'est pas parallèle à l'axe (Oy) et dont l'équation réduite est :

 $(\Delta) y = mx + p$

a) Déterminer l'équation de (Δ) en fonction de m uniquement.

b) Déterminer m pour que (Δ) soit tangente au cercle (C).

4- Soit B(4,5)

Le cercle étude analytique a) Montrer que la droite passante par B et parallèle à l'axe des ordonnées est tangente au cercle (C).

b) Soit (Δ') une droite qui passe par A et qui n'est pas parallèle à l'axe (Oy) et dont l'équation réduite est : (Δ') y = mx + p; Déterminer m pour que (Δ) soit tangente au cercle (C).

2.3 Tangente à un cercle et de direction déterminée.

Soit (\mathcal{C}) le cercle de centre $\Omega(-1,2)$ et de rayon 3.

Déterminer les équations des tangentes à (\mathcal{C}) et de vecteur directeur $\vec{u} \begin{pmatrix} -2 \\ 1 \end{pmatrix}$.

3) Equation paramétrique d'un cercle.

Considérons (\mathcal{C}) le cercle de centre $\Omega(a,b)$ et de rayon R.

On a :
$$\overrightarrow{OM} = \overrightarrow{O\Omega} + \overrightarrow{\Omega M}$$
 (1)

Si
$$M(x,y)_{\mathcal{R}}$$
 et $M(X,Y)_{\mathcal{R}}$, où : $\mathcal{R}(0,\vec{\imath},\vec{\jmath})$ et $\mathcal{R}'(\Omega,\vec{\imath},\vec{\jmath})$

Alors (1) se traduit analytiquement par :

$$\begin{cases} x = a + X \\ y = b + Y \end{cases}$$

Or:
$$\begin{cases} X = R.\cos\alpha \\ Y = R.\sin\alpha \end{cases}$$

et par suite :
$$\begin{cases} x = a + R.\cos\alpha \\ y = b + R.\sin\alpha \end{cases}$$

