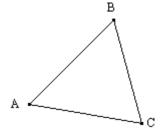
المتفاوتة المثلثية و واسط قطعة


1) - المتفاوتة المثلثية:

* خاصية 1: A و B و C ثلاث نقط مختلفة

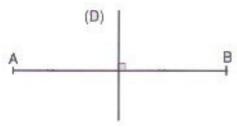
AB = AC + BC : فإن [AB] فإن C تنتمي إلى القطعة C فإن C كانت C لا تنتمي إلى القطعة C فإن C فإن C

* مثال :

 $\mathbf{AB} = \mathbf{AC} + \mathbf{BC}$

BC < AB + AC و کذلك : AC < AB + BC

و منه نستنتج ما يلي : في مثلث طول أي ضلع من أضلاعه أصغر من مجموع طولي الضلعين الآخرين . تطبيق :


AC = 17و AB = 7cm و AB = 7cm و AB = 5 و AB =

2) - واسط قطعة:

* تعريف : واسط قطعة هو مستقيم يمر من منتصف القطعة و عمودي على حاملها

* مثال :

لنرسم قطعة [AB] قطعة و (D) واسطها

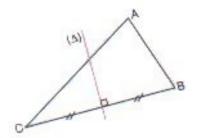
- * خاصية 2 : كل نقطة تنتمي إالى واسط قطعة تكون متساوية المسافة عن طرفيها
 - * بتعبير آخر:

[AB] قطعة و (Δ) واسطها و M نقطة من المستوى .

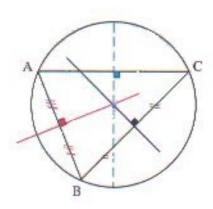
MA = MB يعنى أن $M \in (\Delta)$

* خاصية 3: كُلُ نُقطة متساوية المسافة عن طرفي قطعة تنتمي إلى واسط هذه القطعة * بتعبير آخر:

ا فطعة و (Δ) واسطها و M نقطة من امستوى . [AB]


 $M \in (\Delta)$ يعنى أن MA = MB

3) - واسطات مثلث:


* تعريف 2: وأسط مثلث هو واسط كل ضلع من أضلاعه

مثال: ABC مثلث و (Δ) واسط الضلع ABC.

ABC نسمي المستقيم (Δ) واسط المثلث

*خاصية 4: واسطات مثلث تتلاقى في نقطة واحدة تسمى مركز الدائرة المحيطة بهذا المثلث

مثال: