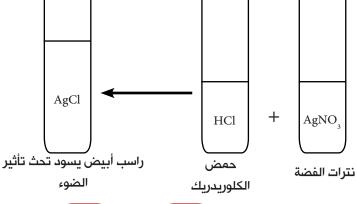
روائز الكشف على الأيونات

I- أيونات المحاليل المائية

- كل المحاليل المائية يتحقق فيها الحياد الكهربائي في بحيث مجموع شحن الكاتيونات و الأنيونات منعدم. - جميع المحاليل الحمضية تحتوي على عدد كبير من أيونات الهيدرونيوم +H₃O مقارنة مقارنة مع عدد أيونات الهيدروكسيد -OH.
 - المحاليل القاعدية تحتوي على عدد كبير من أيونات الميدروكسيد OH^- مقارنة مع أيونات الهيدرونيوم H_1O^+

صيغ بعض المحاليل المائية

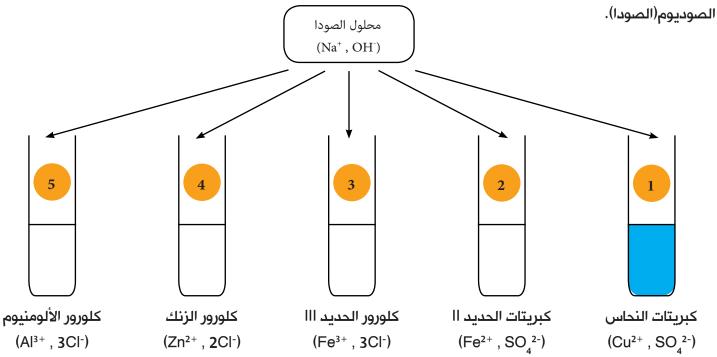
الصيغة الأيونية	الصيفة الإجمالية	اسم المحلول	الصيغة الأيونية	الصيفة الإجمالية	اسم المحلول
(Cu ²⁺ , SO ₄ ²⁻)	CuSO ₄	كبريتات النحاس	(3H ⁺ , PO ₄ ³⁻)	H ₃ PO ₄	الحمض الفوسفوري
(2K ⁺ , CO ₃ ²⁻)	K ₂ CO ₃	كربونات البوتاسيوم	(Na ⁺ , OH ⁻)	NaOH	الصودا
(NH ₄ , Cl ⁻)	NH ₄ Cl	كلورور الأمونيوم	(K ⁺ , MnO ₄ ⁻)	KMnO ₄	برمنغنات البوتاسيوم
(Fe ²⁺ , 2Cl ⁻)	FeCl ₂	كلورور الحديد II	(Na ⁺ , ClO ⁻)	NaClO	تحت كلوريت الصوديوم
(Fe ³⁺ , 3Cl ⁻)	FeCl ₃	كلورور الحديد III	(2K ⁺ , Cr ₂ O ₇ ²⁻)	K ₂ Cr ₂ O ₇	ثنائي كرومات البوتاسيوم
(Cu ²⁺ , 2Cl ⁻)	CuCl ₂	كلورور النحاس	(2H ⁺ , SO ₄ ²⁻)	H ₂ SO ₄	حمض الكبريتيك
(H+, Cl ⁻)	HCl	كلورور الهيدروجين	(H ⁺ , Cl ⁻)	HCl	حمض الكلوريديريك
(Ag ⁺ , NO ₃ ⁻)	$AgNO_{_3}$	نترات الفضة	(H ⁺ , NO ₃ ⁻)	HNO ₃	حمض النتريك
(K ⁺ , OH ⁻)	КОН	هيدروكسيد البوتاسيوم	(Fe ²⁺ , SO ₄ ²⁻)	FeSO ₄	كبريتات الحديد II
(Na ⁺ , OH ⁻)	NaOH	هيدروكسيد الصوديوم	$(2\text{Fe}^{3+}, 3(\text{SO}_4)^{2-})$	Fe ₂ (SO ₄) ₃	كبريتات الحديد III


II- الكشف على أيونات الكـــلور

تجربة : نأخد أنبوب اختبار يحتوي على حمض الكلوريدريك (Ag+ , NO $_3$ -) و نضيف اليه محلول نترات الفضة ($^-$ (H+ , Cl-)

ملاحظة: نلاحظ تكون راسب أبيض اللون أبيض الذي يسود تدريجيا تحت تأثير الضوء.

استنتاج: الراسب الأبيض المتكون يسمى كلورور الفضة ويرمز له بـ AgCl


معادلة الترسب:

روائر الكشف على الأيونات

III- الكشف على الأيونات الفلرية

تجربة: نأخد خمسة أنابيب إختبار تحتوي على محاليل مختلفة بها كاتيونات فلزية، ونضيف لكل أنبوب قليل من محلول هيدروكسيد

ملاحظات و استنتاج :

5	4	3	2	1	الأنبوب
تكون راسب أبيض	تكون راسب أبيض	تكون راسب ذو لون الصدأ	تكون راسب أخضر فاتح	تكون راسب أزرق	الملاحظات
الراسب الأبيض هو هيدروكسيد الألومنيوم صيغته : (OH) Al	الراسب الأبيض هو هيدروكسيد الزنك : Zn(OH) ₂	الراسب ذو لون الصدأ هو هيدروكسيد الحديد Fe(OH)3 :	الراسب الأخضر هو هيدروكسيد الحديدII صيغته : Fe(OH) ₂	الراسب الأزرق هو هيدروكسيد النحاسII صيغته : وCu(OH)	الاستنتاج
Al ³⁺ +3OH ⁻ →Al(OH) ₃	$Zn^{2+} + 2OH^{-}$ $\longrightarrow Zn(OH)_{2}$	Fe ³⁺ + 3OH ⁻ → Fe(OH) ₃	$Fe^{2+} + 2 OH^{-}$ $\longrightarrow Fe(OH)_{2}$	Cu ²⁺ +2OH ⁻ → Cu(OH) ₂	معادلة الترسب