

معادلة مستقيم

I. المعادلة المختصرة لمستقيم:

تعریف

y=ax+p : هي المعادلة المختصرة لمستقيم (D) المعادلة المختصرة المستقيم

يسمى الميل أو المعامل الموجه أو معدل التغير. a

p: يسمى الأرتوب عند الأصل.

مثال:

a=2 هي معادلة مختصرة للمستقيم (D) : y=2x-3

p=-3 و أرتوبه عند الأصل هو

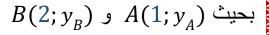
a=-1 هي معادلة مختصرة للمستقيم (Δ): y=-x

p=0 و أرتوبه عند الأصل هو

حالة خاصة:

A(0;2) هي معادلة للمستقيم (D) المار بالنقطة (D;y=2

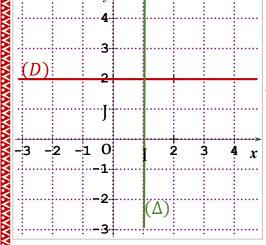
و يوازي محور الأفاصيل.


I(1;0) هي معادلة للمستقيم (Δ) المار بالنقطة (Δ): $\chi=1$

و يوازي محور الأراتيب.

(o.i.j) م.م المنسوب الى المعلم م.م

(AB): y = -2x + 3: لنشئ المستقيم (AB) الدي معادلته



(AB) نعوض أفصول A و B في معادلة المستقيم

$$y_4 = -2 \times 1 + 3 = -2 + 3 = 1$$

$$y_R = -2 \times 2 + 3 = -4 + 3 = -1$$

х	у	
1	1	A(1;1)
2	-1	B(2;-1)

Ⅲ. تحديد معادلة مستقيم:

خاصية

$$x_A \neq x_B$$
 نقطتین بحیث $B(x_B;;y_B)$ و $A(x_A;y_A)$ نقطتین بحیث $A(x_A;y_A)$

$$a=rac{y_B-y_A}{x_B-x_A}$$
 : هو (AB) فإن ميل المستقيم

مثال:

$$B(-4;0)$$
 و $A(-1;-3)$

- (AB) حدد ميل المستقيم (1
- 2) حدد المعادلة المختصرة للمستقيم (AB).

الحل:

$$a = \frac{y_B - y_A}{x_B - x_A} = \frac{0 - (-3)}{-4 - (-1)} = \frac{0 + 3}{-4 + 1}$$

$$= \frac{3}{-3} = -\frac{3}{3} = -1$$
(1)

$$(AB)$$
: $y = ax + p$: كدينا المعادلة المتختصرة ل (AB) تكتب على شكل (2 $y = -1x + p$

لنحدد p : بما أن النقطة B(-4;0) تنتمي الى المستقيم

$$p=-4$$
 و منه $0=4-p$ إذن $0=-1 imes (-4)+p$ و منه $y=-x-4$ و بالتالي المعادلة المختصرة ل

IV. توازي و تعامد مستقيمين:

1) شرط توازي مستقيمين:

خاصية

- ✓ يكون مستقيمان متوازيان إذا كان لهما نفس الميل .
 - ✓ إذا كان لمستقيمين نفس الميل, فهما متوازيان .

مثال 1:

. لدينا
$$(D_1)$$
 و (D_2) لهما نفس الميل إذن فهما متوازيان $\{(D_2): y=-2x+1\}$

مثال 2:

$$(AB): y = -3x + 5$$
 : نعتبر المستقيم (AB): نعتبر المستقيم

دد المعادلة المختصرة للمستقيم (D) المار بالنقطة C(2;1) والموازي للمستقيم C(3;1)

$$a_{(AB)}=a_{(D)}=-3$$
 فإن ميل $(AB)//(D)$ هو (AB) هو (AB) فإن ميل أن ميل

$$(D)$$
: $y=-3x+p$: هي (D) ومنه المعادلة المختصرة للمستقيم

$$1=-6+p$$
 نخدد p : بما أن (D) يمر من النقطة C إذن C إذن D إذن

$$(D): y = -3x + 7$$
 ومنه $p = 7$ اذن $p = 7$ وبالتالي

2) شرط تعامد مستقيمين:

خاصية

- \sim یکون مستقیمان متعامدان ،إذا کان جداء میلهما یساوي \sim .
- . إذا كان جداء ميلي مستقيمين يساوي 1 ، فهما متعامدين .

مثال 2:

$$B(2;-1)$$
 و $A(4;2)$ نعتبر النقط $A(4;2)$ و المستوى المنسوب إلى معلم متعامد ممنظم $y=-\frac{2}{3}x+1$ و المستقيم $y=-\frac{2}{3}x+1$

- (AB) حدد المعادلة المختصرة للمستقيم
- . استنتج أن المستقيمين (AB) و (D) متعامدان (2

الحل:

$$a = \frac{y_B - y_A}{x_B - x_A} = \frac{-1 - 2}{2 - 4} = \frac{-3}{-2} = \frac{3}{2}$$
 \tag{1}

$$y = \frac{3}{2}x + p$$
 : يكتب (AB) إذن معادلة المستقيم

لنحدد p : بما أن النقطة A(4;2) تنتمي الى المستقيم A(4;2) فإن

$$p = -4$$
 و منه $2 = 6 + p$ يانن $2 = 4 \times \frac{3}{2} + p$

$$(AB): \ y = rac{3}{2}x - 4$$
 : هي (AB) هي التالي المعادلة المختصرة ل $-rac{2}{3}$ وميل (D) هو $rac{3}{2}$ وميل (AB) هو (AB) هو (AB)

$$(AB)\bot(D)$$
 فإن $-\frac{2}{3}\times\frac{3}{2}=-1$ وبما أن