القدرة الكهربائية المالية الكهربائية

(ذ.إبراهيم الطاهري)

I) مفهوم القدرة الكهربائية :

🦀 مــقــارنـــة:

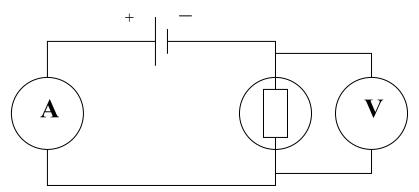
: عند معاينة اشتغال مصباحيـن (L_1) و (L_2) يحمـلان علـى التوالـي الإشارات التالـيـة (L_1) عند معاينة اشتغال مصباحيـن (L_1) ، نلاحـظ أن المصباح (L_1) يضـيء أكثر من المصباح (L_2) ،نقول إذن ان القدرة الكهربائية للمصباح (L_1) أكبر من القدرة الكهربائية للمصباح (L_2)

4 تـعـريـف:

القدرة الكهربائية عبارة عن مقدار فيزيائي يعبر عن مدى قدرة جهاز كهربائي للقيام إما بالإضاءة (مصباح مثلا) أو التسخين (مدفأة مثلا) أو الحركة (مروحة مثلا) .

- 🖈 يرمز للقدرة الكهربائية بالحرف 📍
- ★ الوحدة العالمية لقياس القدرة الكهربائية هي الواط التي نرمز لها بالحرف W.
 - ★هناك وحدات أخرى للقدرة الكهربائية (مضاعفات وأجزاء الواط) مثل :

→ الكيلواط: WK = 1000 W = 10³ W


← الميغاواط: 1 MW = 10⁶ W

← الجيغاواط: 1 GW = 10⁹ W

الميليواط: 1 mW = 10⁻³ W

II) القدرة الكهربائية في التيار المستمر :

تـــجـــربـــة : نركب مصابيح ذات قدرات مختلفة ونشغلها تحت توترات استعمالها،ثم نقيس في كل حالة التوتر U بين مربطي المصباح و شدة التيار I المار في المصباح .

نـــتــائـــج:

مصباح بالواط (W)	القدرة المسجلة على اا	الجداء U.I	I(A)	U(V)
	25	24,60	4,1	6
	7	6,960	0,58	12
**Accessorate	40	38,40 	3,2 	

اســـتــنــــاج: القدرة المسجلة على كل مصباح تساوي تقريبا جداء التوتر بين مربطيه وشدة التيار المار فيه ، ونكتب:

 $P = I \cdot U$

حيث : * P : القدرة الكهربائية للجهاز بالواط (W) .

* U : التوتر بين مربطي الجهاز بالفولط (V) .

* I : شدة التيار المار في الجهاز بالامبير (A) .

ملحوظة : هذه العلاقة صحيحة دائما عند اشتغال الجهاز بتيار مستمر .

III) القدرة الكهربائية في التيار المتناوب :

العلاقة P = I . U تطبق في التيار المتناوب بالنسبة للأجهزة التي تعتمد على تأثيــر حراري (مصباح، مكواة، مدفأة،....) ، أما بالنسبة للمحركات (مروحة، طاحونة بن)، فإن القدرة P تخالف الجداء (I.U) .

🍳 القدرة الكهربائية المستهلكة من طرف جهاز تسخين :

نعتبر جهاز تسخين مقاومته الكهربائية R .

ونعلم أن : P = I . U

P = R.I.I : نستنتج أن (1) و (2) من خلال العلاقتين (1) و

وبالتالي فإن القدرة الكهربائية المستهلكة من طرف جهاز تسخين مقاومته R هي :

 $P = I \cdot R^2$

VI) المميزات الاسمية لجهاز كهربائي :

المميزات الاسمية لجهاز كهربائي هي المقادير المسجلة على هذا الجهاز :

- التوتر الاسمى : وهو التوتر الذي يشتغل به الجهاز بصفة عادية .
- الشُّدَّة الاسميَّة : وهي شُدَّة التيار الذيُّ يجب أنَّ يمر في الجهاز ليشتغل بصفة عادية .
 - القدرة الاسمية : وهي جداء التوتر الاسمي والشدة الاسميـة ، أي القدرة المستهلكة عند الاشتغال بصفة عادية .

مللحلوظية:

القدرة الكهربائية المستهـلـكـة في تركيب منزلـي تساوي مجموع القدرات الكهربائـيـة المستهلكة من طرف جميع الأجهزة المشتغلة في نفس الوقت .

٧) الفائدة من معرفة القدرة الاسمية :

عند مرور تيار كهربائي في موصل أومي ، فإن هذا الأخير يسخن ، مما يمكن أن يؤدي إلى نشوب حرائق إذا لم تحترم معايير السلامة .

ُ بَمعرفتُنا للتُوتر الْاسمِي و القُدرة الْاُسمِية لجهاز كهربائـي، يمكن حساب شدة الـتـيـار الكهربائي الذي يمر فيه عند الاشتغال بصفة عادية، وبالتالي نتمكن من تحديـد الصهيـرة الملائمة لحماية هذا الجهاز .