
القدرة الكهربائية La puissance électrique

أ. مفهوم القدرة الكهربائية أ. تجرية

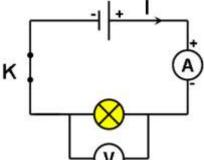
نشغل مصباحين مختلفين L_1 و L_2 يحملان على التوالي الإشارتين (12V – 5W – (2W-12V)) بواسطة مولدين توتر هما على التوالى 12V، كما يبين الشكل جانبه:

ب. ملاحظة

للاحظ أن إضاءة المصباح L_1 أقوى من إضاءة المصباح L_2 وذلك راجع لإختلاف المقدارين 5W و بالنسبة لكل مصباح ويسمى هذا المقدار الفيزيائي القدرة الكهربائية .

ج. خلاصة

﴿ القدرة الكهربائية مقدار فيزيائي يرمز له بالحرف P ويعبر عن مدى تفوق جهاز كهربائي في الأداء (إضاءة، تسخين ...)، يعبر عن القدرة الكهربائية في النظام العالمي للوحدات بالواط Watt ، ونرمز له بالحرف W.


نستعمل أيضا كوحدة للقدرة الكهربائية الوحدات التالية: ☑ الكيلوواط 1KW=10³W ☑ الميغاواط 1MW=10⁶W

 $1 \mathrm{mW} = 10^{-3} \mathrm{W}$ الجيغاواط $1 \mathrm{GW} = 10^{9} \mathrm{W}$ الجيغاواط

II. القدرة الكهربائية المستهلكة من طرف جهاز كهربائي

القدرة الكهربانية في التيار المستمر أ تحرية

ننجز الدارة الكهربائية التالية باستعمال مصباح (6W - 6V) ثم نقيس شدة التيار المار في المصباح والتوتر بين مربطي المصباح ثم نعيد التجربة بإستعمال مصباح أخر (2.4W - 6V).

القدرة الكهربائية	بداء U×I	التوتر (U(V	شدة التيار (I(A	المصباح
3W		6V		\mathbf{L}_{1}
0.8W		6V		\mathbf{L}_2

ب. إستنتاج

بنستنتج من خلال الجدول أن الجداء U imes I يساوي تقريبا القدرة P المسجلة على المصباح.

ج. خلاصة

❖ تساوي القدرة الكهربائية المستهلكة من طرف جهاز يشتغل بالتيار المستمر، جداء التوتر المطبق بين مربطيه وشدة التيار المار فيه و نعبر عن ذلك بالعلاقة التالية:

 $P = U \times I$

W : القدرة الكهربائية المستهلكة بالواط W بحيث :

V التوتر الكهربائي بين مربطي الجهاز بالفولط V

A : شدة التيار الكهربائي المار في الجهاز بالأمبير : I 💉

د. ملحوظة

♦ العلاقة P=U x I تبقى صالحة في التيار المتناوب الجيبي بالنسبة لأجهزة التسخين (مصابيح، مكواة، أفران كهربائية، ..) تمرين تطبيقي

القدرة الكهربائية المستهلكة من طرف مكواة هي 1200W . أحسب شدة التيار المار في المكواة علما أن التوتر المطبق بين مربطيها هو 220V ؟

القدرة الكهربائية المستهلكة في جهاز التسخين أ. تجرية

ننجز التركيب التجريبي جانبه.

نغير التوتر بين مربطي الموصل الأومى ذي المقاومة $\mathbf{R} = \mathbf{100} \; \mathbf{\Omega}$ ، ونقيس شدة التيار المار فيه.

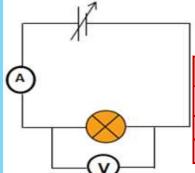
R×I² جداء	القدرة الكهربائية P(W)	شدة التيار (I(A	التوتر (U(V
			6V
			12V

 $P = R \times I \times I$

ب. إستنتاج

🗘 القدرة الكهربائية المستهلكة من طرف موصل أومى مقاومته R هي :

 $\mathbf{U} = \mathbf{R} \times \mathbf{I}$: لدينا حسب قانون أوم


ونعلم أن: $\mathbf{P} = \mathbf{U} \times \mathbf{I}$ من خلال العلاقتين (1) و (2) نستنتج أن

وبالتالي فإن القدرة الكهربائية المستهلكة من طرف جهاز تسخين هي :

IV. المميز ات الاسمية لجهاز كهر بائي أ. تحرية

نجز التركيب المبين في الشكل جانبه، ثم نشغل المصباح (12V-3W) ، تحث التوترات المشار اليها في الجدول أسفله.

إضاءة المصباح	P(W)	بداء U×I	شدة التيار (I(A	التوتر (U(V
إضاءة ضعيفة				6V
الضاءة عادية				12V
الضاءة مفرطة				13V

ب. إستنتاج

يضيء المصباح بصفة عادية عند تطبيق توتر بمربطيه مطابق لتوتره الإسمى U.

ج. خلاصة

المميزات الإسمية لجهاز كهربائي هي المقادير المسجلة على هذا الجهاز وهي:

- التوتر الإسمى: وهو التوتر الذي يشتغل به الجهاز بصفة عادية.
- الشدة الإسمية: وهي شدة التيار الذي يجب أن يمر في الجهاز ليشتغل بصفة عادية.
- لله القدرة الإسمية: وهي جداء التوتر الإسمي والشدة الإسمية، أي القدرة المستهلكة من طرف الجهاز عند اشتغاله بصفة عادية. ملحوظة
- القدرة الكهربائية المستهلكة في تركيب منزلي تساوي مجموع القدرات الكهربائية المستهلكة من طرف جميع الأجهزة المشغلة $P=P_1+P_2+P_3+\cdots$ في نفس الوقت $P=P_1+P_2+P_3+\cdots$
- الفائدة من معرفة القدرة الإسمية لجهاز كهربائي هو اختيار الصهيرة المناسبة لحماية الجهاز وذلك بحساب شدة التيار الإسمية $P = U \times I$ انطلاقا من العلاقة $I = U \times I$
- دع يجب أن لايتجاوز مجموع قدرات الأجهزة الكهربائية المشغلة في نفس الوقت القدرة القصوية المحدد للمنزل من طرف وكالة توزيع الكهرباء.

تمرين تطبيقي رقم 1

- ◄ في تركيب منزلي (V 220)، نشغل الأجهزة الكهربائية التالية:
 - ✓ جهاز تلفاز (P₁=88W ; I₁=0,4 A).
 - $P_2=2.1kW$ آلة غسيل قدرتها الاسمية هي آلة غسيل
- $I_{3}=0.25$ A ثريا مكونة من ستة مصابيح كل منها يتميز بشدة تيار اسمية قيمتها $I_{3}=0.25$
 - ✓ مسخن مائي مميزاته الاسمية (P₄=990W; I₄=4,5A).
 - I_2 أحسب شدة التيار I_2 المار في آلة الغسيل. ثم المقاومة I_2 للمسخن المائي ؟
 - 2. أحسب القدرة الكهربائية PL لكل مصباح في الثريا، ثم قدرة الثريا P3 ؟
 - أحسب القدرة الكهربائية الاجمالية للأجهزة الأربعة ؟
- 4. هل يمكن تشغيل جميع هذه الأجهزة في نفس الوقت و دون انقطاع التيار الكهربائي ؟ علل جوابك. نعطي شدة التيار القصوية للتيار الكهربائي المنزلي: Imax = 15 A.

تمرين تطبيقي رقم 2

- $0.29\,A$ يضيء مصباح قدرته الكهربائية الإسمية 5W تحت توتر مستمر 6V يمر فيه تيار شدته 4
 - 1. أحسب القدرة الكهربائية المستهلكة من طرف المصباح خلال إشتغاله ؟
 - 2. هل يضيء المصباح بصفة عادية ؟