

الحساب المثلثي

مقدمة :

المصريون القدامي هم أول من استخدم الحساب المثلثي لبناء الأهرامات والمعابد الفرعونية ولدراسة الفلك وحساب المسافات الجغرافية وقياس زوايا الإرتفاع والإنخفاض .

I. النسب المثلثية لزاوية حادة:

في مثلث $A\hat{C}B$ قائم الزاوية في A ،النسب المثلثية للزاوية

 \checkmark النسبة $\frac{AB}{BC}$ تسمى جيب الزاوية $A\hat{C}B$ ونرمز لها ب

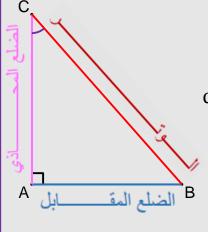
$$\sin A\hat{C}B = \frac{\widehat{C}}{|b|}$$
بتعبير آخر $\frac{AB}{BC} = \frac{AB}{BC}$ بتعبير آخر

 $\cos A\hat{C}B$ تسمى جيب تمام الزاوية $A\hat{C}B$ ونرمز لها ب

$$\cos A\hat{C}B = \frac{\hat{C}}{|b|}$$
بتعبير آخر $\frac{\partial C}{\partial B} = \frac{AC}{|b|}$ بتعبير آخر

 $\sqrt{\tan A\hat{C}B}$ تسمى ظل الزاوية $A\hat{C}B$ ونرمز لها ب

$$an A\hat{C}B = rac{\widehat{C}}{\widehat{C}}$$
بتعبير آخر $rac{AB}{\widehat{C}} = rac{AB}{|AC|}$ الضلع المحاذي ل



مثال:

ABC مثلث قائم الزاوية في A بحيث:

$$BC = 5 cm$$
 cm $AC = 4 cm$ $AB = 3 cm$

: ABC النسب المثلثية للزاوية

 $\sin A\widehat{R}C$ أ- لنحسب

$$\sin A\widehat{B}C = \frac{\widehat{B}}{100}$$
الضلع المقابل لي $\frac{\widehat{B}}{BC} = \frac{AC}{5} = 0.8$

 $\cos A\widehat{B}C$ -

$$\cos A\widehat{B}C = \frac{\widehat{B}}{100}$$
 الضلع المحاذي لي $\frac{\widehat{B}}{BC} = \frac{3}{5} = 0.6$

 $\dot{}$ tan $A\hat{B}C$ ت-لنحسب

$$an A\widehat{B}C = rac{\widehat{B}}{\widehat{B}}$$
 الضلع المقابل لي $rac{\widehat{B}}{\widehat{B}} = rac{AC}{AB} = rac{4}{3} = 1,33$

ملاحظة:

الوتر هو أكبر ضلع في المثلث القائم الزاوية ويكون مقابل للزاوية القائمة .

: اذا كان lpha قياس زاوية حادة ($lpha < 90^\circ$) فإن lpha

و (-1) و المثال (أ) و المثال $0<\coslpha<1$ و $0<\sinlpha<1$

II. علا قات بين النسب المثلثية لزاوية حادة:

خاصية 1

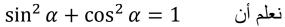
اندا کان α قیاس زاویهٔ حادهٔ فإن α

$$\sin^2 \alpha + \cos^2 \alpha = 1$$
 $\int \tan \alpha = \frac{\sin \alpha}{\cos \alpha}$

مثال:

 $\cos \alpha = \frac{2}{3}$: قیاس زاویة حادة بحیث α

 $\tan \alpha$ $\sin \alpha$



$$\sin^2 \alpha = 1 - \cos^2 \alpha$$

$$= 1 - \left(\frac{2}{3}\right)^2 = 1 - \frac{4}{9}$$

$$= \frac{9 - 4}{9} = \frac{5}{9}$$

$$\sin^2 \alpha = \frac{5}{9}$$

$$icitized in \text{if } \alpha = \frac{5}{9}$$

$$\sin \alpha = \sqrt{\frac{5}{9}} = \frac{\sqrt{5}}{3}$$
 وبالتالي $\sqrt{\sin^2 \alpha} = \sqrt{\frac{5}{9}}$

: cos α بسحنا

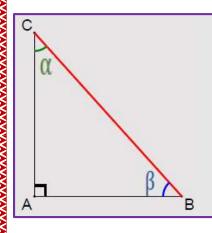
$$\tan \alpha = \frac{\sin \alpha}{\cos \alpha}$$
 نعلم أن

$$\tan \alpha = \frac{\frac{\sqrt{5}}{3}}{\frac{2}{3}} = \frac{\sqrt{5}}{3} \times \frac{3}{2} = \frac{\sqrt{5}}{2}$$
 إذن

$$\tan \alpha = \frac{\sqrt{5}}{2}$$
 وبالتالي

من المربع لأنها موجبة

خاصية 2



$$\begin{cases}
\tan \alpha = \frac{1}{\tan \beta} \\
\tan \beta = \frac{1}{\tan \alpha}
\end{cases} \quad \begin{cases}
\sin \alpha = \cos \beta \\
\sin \beta = \cos \alpha
\end{cases}$$

www.hsaina.com

مثلة :

$$tan 15^{\circ} = \frac{1}{\tan 75^{\circ}}$$

$$\tan 11^{\circ} = \frac{1}{\tan 79^{\circ}}$$

$$\sin 70^{\circ} = \cos 20^{\circ}$$

$$\cos 30^{\circ} = \sin 60^{\circ}$$

$$\sin 80^{\circ} = \cos 10^{\circ}$$

$$\cos 45^{\circ} = \sin 45^{\circ}$$

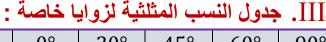
 $A = \cos^2 30^\circ + \cos 10^\circ + \tan 20^\circ \times \tan 70^\circ + \sin^2 60^\circ - \sin 80^\circ$ حسب مایلی:

$\sin \alpha = 1$ لإيجاد الزاوية α بحيث

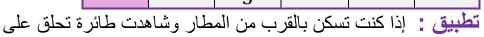
باستخدام الآلة الحاسبة إضغط بالترتيب على

shift تم

لتشاهد على الشاشة °90

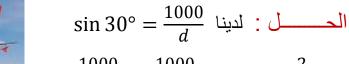


α	0°	30°	45°	60°	90°
$\sin \alpha$	0	1	$\sqrt{2}$	$\sqrt{3}$	1
		$\frac{\overline{2}}{2}$	2	2	
$\cos \alpha$	1	$\sqrt{3}$	$\sqrt{2}$	1	0
		2	2	2	
tan α	0	$\sqrt{3}$	1	$\sqrt{3}$	غير
		3			معروف



ارتفاع 1000m وقمت بتقدير زاوية إرتفاعها فكانت 30° .

أحسب d مسافة بعد الطائرة عن مكان الهبوط ؟



$$d = rac{1000}{\sin 30^{\circ}} = rac{1000}{rac{1}{2}} = 1000 imes rac{2}{1}$$
 إذن

$$d = 2000m = 2 \, km$$
 وبالتالي

