المتجهات - الإزاحة

التمرين الأول

التمرين الثاني

التمرين الرابع

 $\overline{MA} + \overline{MB} = 2\overline{MI}$ بين أن

م و R و R ثلاث نقط من المستوى غير مستقيمية.

$$\overrightarrow{AM} = \frac{1}{2}\overrightarrow{BC}$$
 . أنشئ النقطة M بحيث

$$\overrightarrow{AN} = -\frac{3}{2}\overrightarrow{BC}$$
 . أنشئ النقطة N بحيث 2

د. بین أن النقط A و M و N مستقیمیة. مستقیمیة.

المستوى. M قطعة و I منتصفها. لتكن M نقطة من المستوى.

مثلث. انعتبر النقطتين E و E بحيث ABC

 $. \overrightarrow{BM} = \overrightarrow{MC} \circ \overrightarrow{AE} = \overrightarrow{AB} + \overrightarrow{AC}$

M. أنشئ النقطتين E و M

 $\begin{bmatrix} AE \end{bmatrix}$ بين أن M هي منتصف 2

التمرين الثالث

1. بسط التعابير التالية:

$$\overrightarrow{OA} + \overrightarrow{DO} + \overrightarrow{AB} + \overrightarrow{CD} + \overrightarrow{BC}$$
 $\overrightarrow{AD} - \overrightarrow{FD} + \overrightarrow{ED} - \overrightarrow{AF} + \overrightarrow{BE} + \overrightarrow{AB}$
 $:$ يېن أن

$$\overrightarrow{AB} + \overrightarrow{AC} - 2\overrightarrow{BC} = 2\overrightarrow{AM} + 3\overrightarrow{MB} - \overrightarrow{MC}$$

التمرين السادس

متوازي أضلاع و I مركزه. ABCD

[AB] النقطة M هي منتصف

 \overrightarrow{IB} نامتجهة \overrightarrow{IB} نات المتجهة

M و A و B صور النقط M و A و B صور النقط B و A

 $\begin{bmatrix}A'B'\end{bmatrix}$ بين أن M' هي منتصف 2.

D و C صورتي D و C بالإزاحة T

4. ما هي طبيعة الرباعي A'B'C'D' وحدد مركزه

التمرين الخامس

مثلث. E و E و E ثلاث نقط من المستوى حيث E

$$\overrightarrow{EF} = -\frac{3}{2}\overrightarrow{CB} \quad \text{o} \quad \overrightarrow{AE} = \frac{3}{2}\overrightarrow{AB}$$

$$\overrightarrow{AH} = AB + \frac{1}{2}\overrightarrow{AC} \quad \text{o}$$

H. أنشئ النقط E و F و H

(BC)//(EF) بين أن .2

 \overrightarrow{AC} و \overrightarrow{AB} بدلالة \overrightarrow{EF} و 3

 \overrightarrow{AC} و \overrightarrow{AB} بدلالة \overrightarrow{EH} و 4.

5. استنتج أن النقط E و F و H مستقيمية.

التمرين السابع

AB. C وشعاعها C وطر الدائرة C ائرة مركزها C ائرة مركزها C

BM = 3 نقطة من (ζ) بحيث M

M النعتبر الإزاحة ذات المتجهة t التي تحول النقطة t النقطة

M و B و B هي على التوالي صور النقط B و B و B النقط B و B النقط B و B و B

1. أنشئ الشكل.

2. ما هي طبيعة المثلث EFG

3. أحسب مساحة المثلث EFG

t أنشئ صورة (ζ) بالإزاحة t.

التمرين الأول 1. إنشاء الشكل:

نلاحظ أن المتجهتين \overrightarrow{AB} و \overrightarrow{AC} لهما نفس الأصل، إذن نُنشئ مجموعهما بطريقة متوازي ، $\overrightarrow{AE} = \overrightarrow{AB} + \overrightarrow{AC}$ الأضلاع.

[AE] منتصف منتصف 2.

الطريقة 1 لدينا $\overrightarrow{AE} = \overrightarrow{AB} + \overrightarrow{AC}$ أي \overrightarrow{ACEB} متوازي أضلاع ACEB وبما أن M منتصف القطر BC فإن M هي أيضا منتصف

$$\overrightarrow{AE} = \overrightarrow{AB} + \overrightarrow{AC}$$

$$\overrightarrow{AE} = \overrightarrow{AM} + \overrightarrow{MB} + \overrightarrow{AM} + \overrightarrow{MC}$$

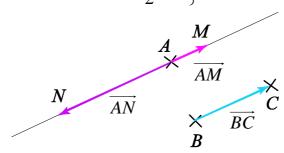
$$\begin{bmatrix} BC \end{bmatrix}$$
 لأن M منتصف $\overrightarrow{MB} + \overrightarrow{MC} = \overrightarrow{0}$

$$\overrightarrow{AE} = 2\overrightarrow{AM} + \underbrace{\overrightarrow{MB} + + \overrightarrow{MC}}_{=\overline{0}}$$

$$\overrightarrow{AM} = \frac{1}{2}\overrightarrow{AE}$$

$$(AM)//(BC)$$
 \overrightarrow{BC} \overrightarrow{AM} و \overrightarrow{BC} لهما نفس المنحى $\overrightarrow{AM}=\frac{1}{2}\overrightarrow{BC}$ لهما نفس المنحى $AM=\frac{BC}{2}$

$$(AN)//(BC)$$
 لدينا \overrightarrow{BC} يعني أن \overrightarrow{AN} يعني أن $\overrightarrow{AN}=rac{3BC}{2}$ لهما منحيان متعاكسان $AN=rac{3BC}{2}$



ك. لنبين أن النقط A و M و N مستقيمية

[2]
$$\overrightarrow{AN} = -\frac{3}{2}\overrightarrow{BC}$$
 و نستنج أن $\overrightarrow{AM} = -\frac{3}{2}\overrightarrow{BC}$ و منه فإن النقط A و A

$$\overrightarrow{OA} + \overrightarrow{DO} + \overrightarrow{AB} + \overrightarrow{CD} + \overrightarrow{BC} = \overrightarrow{OA} + \overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CD} + \overrightarrow{DO}$$

$$= \overrightarrow{OB} + \overrightarrow{BD} + \overrightarrow{DO}$$

$$= \overrightarrow{OB} + \overrightarrow{BD} + \overrightarrow{DO}$$

$$= \overrightarrow{OD} + \overrightarrow{DO}$$

$$= \overrightarrow{OD} - \overrightarrow{OD}$$

$$= \overrightarrow{O}$$

$$\overrightarrow{AD} - \overrightarrow{FD} + \overrightarrow{ED} - \overrightarrow{AF} + \overrightarrow{BE} + \overrightarrow{AB} = \overrightarrow{AD} + \overrightarrow{DF} + \overrightarrow{BE} + \overrightarrow{ED} - \overrightarrow{AF} + \overrightarrow{AB}$$

$$= \overrightarrow{AF} + \overrightarrow{BD} - \overrightarrow{AF} + \overrightarrow{AB}$$

$$= \overrightarrow{BD} + \overrightarrow{AB}$$

$$= \overrightarrow{AB} + \overrightarrow{BD}$$

$$= \overrightarrow{AD}$$

$$\overrightarrow{AB} + \overrightarrow{AC} - 2\overrightarrow{BC} = \underbrace{\overrightarrow{AM} + \overrightarrow{MB}}_{\overrightarrow{AB}} + \underbrace{\overrightarrow{AM} + \overrightarrow{MC}}_{\overrightarrow{AC}} - 2\underbrace{\left(\overrightarrow{BM} + \overrightarrow{MC}\right)}_{\overrightarrow{BC}}$$

$$= \overrightarrow{AM} + \overrightarrow{MB} + \overrightarrow{AM} + \overrightarrow{MC} - 2\overrightarrow{BM} - 2\overrightarrow{MC}$$

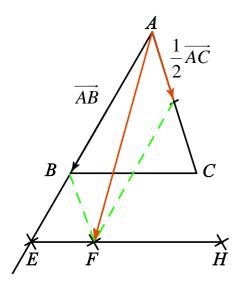
$$= 2\overrightarrow{AM} + \overrightarrow{MB} + \overrightarrow{MC} + 2\overrightarrow{MB} - 2\overrightarrow{MC}$$

$$= 2\overrightarrow{AM} + 3\overrightarrow{MB} - \overrightarrow{MC}$$

$$\overrightarrow{IA} + \overrightarrow{IB} = \overrightarrow{0}$$
 لدينا I منتصف AB يعني أن $\overline{IA} + \overrightarrow{IB} = \overrightarrow{0}$ يعني أن $\overline{IA} + \overrightarrow{IB} = \overrightarrow{MI} + \overrightarrow{IA} + \overrightarrow{MI} + \overrightarrow{IB}$

$$= \overrightarrow{MI} + \overrightarrow{MI} + \underbrace{\overrightarrow{IA} + \overrightarrow{IB}}_{=\overrightarrow{0}}$$

$$= 2\overrightarrow{MI}$$



$$E$$
 التمرين الخامس E .1 .1 $E \in (AB)$.1 .1 $E \in (AB)$ يعني أن \overrightarrow{AE} يعني أن $\overrightarrow{AE} = \frac{3}{2}\overrightarrow{AB}$ لهما نفس المنحى $AE = \frac{3}{2}AB$

$$(EF)//(CB)$$
 $(EF)//(CB)$ و \overline{EF} لهما منحی متعاکسان $\overline{EF}=-rac{3}{2}\overline{CB}$ لهما منحی متعاکسان $EF=rac{3}{2}CB$

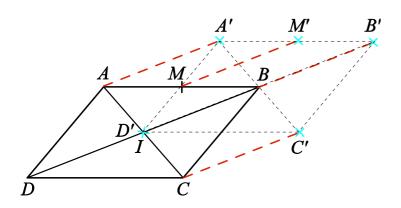
الشاء النقطة H: المتجهتان $\frac{1}{2} \overrightarrow{AC}$ و \overline{AB} لهما نفس الأصل، ننشئ مجموعيهما بطريقة متوازي الأضلاع \overline{AB} (أنظر الشكل)

$$\overrightarrow{EF} = -\frac{3}{2}\overrightarrow{AB} + \frac{3}{2}\overrightarrow{AC}$$
 .5
$$\overrightarrow{EF} = 3\left(-\frac{1}{2}\overrightarrow{AB} + \frac{1}{2}\overrightarrow{AC}\right)$$

$$\overrightarrow{EF} = 3\overrightarrow{EH}$$

حسب السؤال السابق

التمرين السادس



$$M$$
 ! $\frac{IiB}{IiB}$! M هي صورة M بالإزاحة T ذات المتجهة M يعني أن $\overline{MM}' = \overline{IB}$ ($MM')/(IB$) يعني أن \overline{IB} و ' \overline{MM}' لهما نفس المنحى $\overline{MM}' = IB$

A' إنشاء النقطة A' النقطة \overline{IB} المتجهة \overline{B} ذات المتجهة $\overline{AA'}=\overline{IB}$ يعنى أن

$$\left(AA'
ight)//\left(IB
ight)$$
يعني أن \overrightarrow{IB} و ' \overrightarrow{AA} لهما نفس المنحى $AA'=IB$

إنشاء النقطة 'B

 \overrightarrow{IB} هي صورة B بالإزاحة T ذات المتجهة $\overrightarrow{BB}'=\overrightarrow{IB}$ يعني أن $B'\in (IB)$ $B'\in (\overline{BB})$ لهما نفس المنحى $\overrightarrow{BB}'=IB$

[A'B'] منتصف M' نبین أن M'

الطريقة الأولى:

 $\overline{A'M'} = \overline{AM}$ الإزاحة T و 'A هي صورة A بالإزاحة T إذن $\overline{M'B'} = \overline{MB}$ الإزاحة $\overline{M'B'} = \overline{MB}$ و $\overline{A'M'} = \overline{M'B'}$ و الإزاحة $\overline{A'M'} = \overline{M'B'}$ وبما أن $\overline{A'M'} = \overline{M'B'}$ فإن $\overline{AM'} = \overline{MB'}$ وبالتالي فإن ' $\overline{A'M'} = \overline{M'B'}$

[A'B'] ومنه فإن M' منتصف

الط بقة الثانية ·

لنبين أو M' أن النقط A' و B' و M' مستقيمية

T هي صورة A بالإزاحة T و B هي صورة B بالإزاحة B ؛ إذن صورة المستقيم A بالإزاحة B هو A $M \in (A'B')$ المستقيم (A'B') وبما أن $M \in (AB)$ فإن $M \in (A'B')$ M (لأن صورة نقط مستقيمية بإزاحة هي نقط مستقيمية) [1] مستقيمية [1] و [1] مستقيمية

> A'M' = AM الإزاحة T و A هي صورة A بالإزاحة T إذن M بالإزاحة M لدينا B'M'=Mلاينا ' M هي صورة M بالإزاحة T و ' B هي صورة B بالإزاحة M بالإزاحة M[2] A'M' = M'B' إذن

[A'B'] من [1] و [2] نستنتج أن

C. بنفس الطريقة كالسؤال الأول ننشئ النقط C' و C'=I: أنظر الشكل.

A'B'C'D' متوازي أضلاع A'B'C'D'

 $\overrightarrow{AB} = \overrightarrow{DC}$: متوازي أضلاع إذن ABCD

 $\overline{AB} = \overline{A'B'}$: إذن T إذن T هي صورة B بالإزاحة T إذن T الإزاحة T $\overrightarrow{DC} = \overrightarrow{D'C'}$: إذن T إذن T هي صورة D بالإزاحة T و T هي صورة T الإزاحة T

إذن $\overrightarrow{A'B'} = \overline{D'C'}$ وبالتالى فإن A'B'C'D' متوازي أضلاع.

يعني أن ا

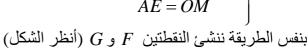
E إنشاء النقطة

t هي صورة A بالإزاحة E $\overrightarrow{AE} = \overrightarrow{OM}$ يعنى أن

(AE)//(OM)

و \overrightarrow{AE} لهما المنحى \overrightarrow{OM}

AE = OM



2. لدينا ABM مثلث قائم الزاوية في M لأن الضلع

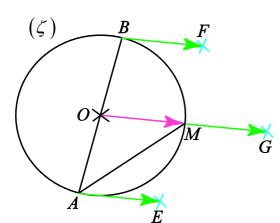
 $\widehat{AMB} = 90^{\circ}$ هو قطر للدائرة (ζ). إذن ABt الإزاحة E بالإزاحة E

 \widehat{EGF} و \widehat{AMB} بالإزاحة \widehat{AMB} بالإزاحة \widehat{AMB} بالإزاحة \widehat{AMB} و \widehat{AMB} بالإزاحة \widehat{AMB} بالإذاحة \widehat{AMB} بالإزاحة \widehat{AMB} بالإزاحة AMB بالإزاحة AMB بال

t و G هي صورة M بالإزاحة

وبما أن صورة زاوية بإزاحة هي زاوية تقايسها فإن ° $\widehat{EGF}=90^\circ$ وبالتالي فإن EFG مثلث قائم الزاوية في G الرأس

 $S_{EFG} = \frac{GE \times GF}{2} : EFG$ مساحة المثلث .3 لدينا صورة قطعة بإزاحة هي قطعة تقايسها



$$EG=AM=3$$
 صورة القطعة $\begin{bmatrix} AM \end{bmatrix}$ بإلإزاحة t هي القطعة t الذن t t عن t صورة القطعة t بالإزاحة t هي القطعة t الإزاحة t عن t بالإزاحة t هي القطعة t الذن t t بالإزاحة t هي القطعة t الذن t