Niveau :3APIC // Session : 2018/2019 Direction provinciale : Khemisset Examen corrigé du mathématiques Lycée Collégiale Mohammed ELQOURI Région : Rabat -Salé-Kenitra Professeur: LAHSAINI Yassin

Examen			
Exercice 1:(5.5 pts)			
1- Résous les deux équations suivantes:			
a) $x - 3 = 5 - x$			
b) $5x(x-3) + (2x+1)(x-3) = 0$			
2- Résous les deux inéquations suivantes:			
a) $5x + 1 < 2x - 5$			
b) $\frac{x-4}{3} < \frac{x-2}{2}$			
3- a) Résous le système suivant :			
x-2y=0 b) Une bibliothèque comprend 186 livres, un certain nombre dentre eux sont en arabe et les autres en français.			
Si vous savez que le nombre de livres en arabe est égal au double du nombre de livres en français. Calcule le			
nombre de livres de chaque langue1pt			
Exercice 2:(5.5 pts)			
Le plan est rapporté d' un repère orthonormè (O,I,J) .			
On considère la fonction affine f définie par : $f(x)=2x-4$ et soit (D_1) est sa représenation graphique dans			
le repère $(0,I,J)$.			
1- a) Calcule f(0)et f(1)			
b) Détermine le nombre a qui a pour image 2 par f0.5pt			
c) Le point $H(1;2)$ appartient $-$ il à (D_1) ? justifie ta réponse0.5pt			
d) Détermine l'abscisse du point d'intersection de (D_1) et l'axe des abscisses1 pt			
2- Soient g la fonction linéaire telle que sa représentation graphique (D_2) passe par le point $P(-1;2)$.			
a) Montre que : $g(x) = -2x$			
b) Détermine l'abscisse du point d'intersection de (D_1) et (D_2)			
c) Construis (D_1) et (D_2) dans un même repère (O,I,J)			
Exercice 3:(6pts)			
$Dans\ un\ plan\ rapport\'e\ \grave{a}\ un\ rep\`ere\ orthonorm\'e\ , on\ consid\`ere\ les\ points: A(0;-4); B(3;0); C(4;4); E(2;0)et\ land and all all all all all all all all all al$			
droite (Δ)d'équation : $y = \frac{-1}{2}x + 1$.			
1- Détermine les coordonnées du vecteur \overrightarrow{AC} et calcule la distance AC			
2- Montre que le point E est le milieu du segment [AC]			
3- Vérifie que l'équation réduite de la droite (AC) est : $y = 2x - 4$			
4- a) Montre que la droite (Δ) passe par le point E			
b) Montre que la droite (Δ) est la médiatrice du segment [AC]1pt			
5- Détermine l'équation réduite de la droite (L) qui passe par B et qui est parallèle à la droite (AC) $1pt$			
Exercice 4:(3pts)			
Soit ABC un triangle rectangle en B tel que BC=2AB, et soit I le milieu de [BC].			
On considère la translation T qui transforme B en I , et soit le point K l' image du point A par la translation T .			
1- Constuis une figure qui vérifie les données			

2- Quelle est l'image du point I par la translation T ? justifie ta réponse0.5pt

3-	Détermine l'image de la droite (BC) par la translation T? justifie ta réponse	0.5pt
4-	Montre que le quadrilatère AKIB est un carré	1pt
<i>5</i> -	Détermine la mesure de l'angle IKC . Justifie ta réponse	0.5pt

Correction de l'examen

Exercice 1:

1- Résolution des équations :

a)
$$x - 3 = 5 - x$$

 $x - 3 + 3 = 5 - x + 3$
 $x = 8 - x$
 $x + x = 8 - x + x$
 $2x = 8$
 $\frac{2x}{2} = \frac{8}{2}$
 $x = 4$

b)
$$5x(x-3) + (2x+1)(x-3) = 0$$

 $(x-3)(5x+2x+1) = 0$
 $(x-3)(7x+1) = 0$
 $x-3 = 0$ ou $7x+1 = 0$
 $x-3+3 = 0+3$ ou $7x+1-1 = 0-1$
 $x = 3$ ou $7x = -1$
 $x = 3$ ou $\frac{7x}{7} = \frac{-1}{7}$
 $x = 3$ ou $x = \frac{-1}{7}$

Les solutions de cette équation sont : 3 et $\frac{-1}{7}$

2- Résolution des inéquations

a) 5x + 1 < 2x - 5

$$5x + 1 - 1 < 2x - 5 - 1$$

$$5x < 2x - 6$$

$$5x - 2x < 2x - 6 - 2x$$

$$7x < -6 \cdot Puisque 7 > 0 \text{ alors}:$$

$$\frac{7x}{7} < \frac{-6}{7}$$

$$x < \frac{-6}{7}$$

Les solutions de cette inéquation sont tous les nombres réels qui sont strictement inférieur à $\frac{-6}{7}$

b)
$$\frac{x-4}{3} < \frac{x-2}{2}$$

$$\frac{2(x-4)}{2\times 3} < \frac{3(x-2)}{3\times 2}$$
Puisque $6 > 0$ alors:
$$2(x-4) < 3(x-2)$$

$$2x - 8 < 3x - 6$$

$$2x - 3x < -6 + 8$$

$$-x < 2 .puisque 1-< 0 alors:$$

$$\frac{-x}{-1} > \frac{2}{-1}$$

$$x > -2$$
Les solutions de cette inéquation sont tous les

nombres réels qui sont strictement supérieur à -2

3- Résolution de système

$$a) \begin{cases} x + y = 186 \\ x - 2y = 0 \end{cases}$$

D'après la deuxième équation on a: x = 2y. Je remplace x par 2y dans la première équation je trouve :

$$2y + y = 186 \ alors \ 3y = 186 \ par \ suite \ y = \frac{186}{3} \ , d'où \ y = 62.$$

On
$$a x = 2y = 2 \times 62 = 124 d'où x = 124$$
.

Le couple (12,62) est la solution unique de ce système.

b) Résolution du problème :

Choix des inconnues :

x: le nombre de livres en arabe

y: le nombre de livres en français

Mise en système

Le total de livres est égale 186 signifie que x + y = 186

Le nombre de livres en arabe est égal au double de nombre de livres en français signifie que x = 2y alors x - 2y = 0

$$x + y = 186$$

Finalement je trouve le système x - 2y = 0

* Résolution du système:

D'après la question (3.a) on a x = 124 et y = 62

La vérification :

$$x + y = 124 + 62 = 186 et \ 2 \times 62 = 124$$

❖ La conclusion :

Le nombre de livres en arabe est 124 et le nombre de livres en français est 62.

Exercice 2:

1-
$$f(x) = 2x - 4$$

a)
$$f(0) = 2 \times 0 - 4 = 0 - 4 = -4$$
 et $f(1) = 2 \times 1 - 4 = 2 - 4 = -2$ alors $f(0) = -4$ et $f(1) = -2$

b) Le nombre a, a pour image 2 par f signifie que f(a) = 2 alors 2a - 4 = 2 par suite 2a = 6 d'où $a = \frac{6}{2} = 3$

le nombre a, qui a pour image 2 par f est a = 3.

c) Le point H(1; 2) appartient $-il à (D_1)$?

Comme $f(1) = -2 \neq 2$ alors le point H n'appartient pas au (D_1) .

d) Détermine l'abscisse du point d'intersection de (D_1) et l'axe des abscisses

On note $K(x_K, y_k)$ le point d'intersection de (D_1) et l'axe des abscisses alors $y_K = 0$.

$$K \in (D_1) \ alors \ f(x_K) = y_k \ par \ suite \ 2x_K - 4 = 0 \ donc \ x_K = \frac{4}{2} = 2.$$

l'abscisse du point d'intersection de (D_1) et l'axe des abscisses est 2.

2- (D_2) passe par le point P(-1;2)

a) g est une fonction linéaire alors g(x) = ax. Puisque (D_2) passe par le point P(-1; 2) alors g(-1) = 2 d'où $a = \frac{g(-1)}{-1} = \frac{2}{-1} = -2$ donc g(x) = -2x.

b) Détermine l'abscisse du point d'intersection de (D_1) et (D_2)

Soit $L(x_L; y_L)$ le point d'intersection de (D_1) et (D_2) alors $f(x_L) = g(x_L)$ donc $2x_L - 4 = -2x_L$ par suite $2x_L + 2x_L = 4$ alors $4x_L = 4$ d'où $x_L = 1$.

Exercice 3

1- A(0; -4) et C(4; 4)

$$\overrightarrow{AC}(x_C - x_A; y_C - y_A)$$
 alors $\overrightarrow{AC}(4 - 0; 4 - (-4))$ d'où $\overrightarrow{AC}(4; 8)$

On a
$$\overrightarrow{AC}(4; 8)$$
 alors $AC = \sqrt{4^2 + 8^2} = \sqrt{16 + 64} = \sqrt{80} = \sqrt{16 \times 5} = \sqrt{16} + \sqrt{5} = 4\sqrt{5}$ d'où $AC = 4\sqrt{5}$.

2- Soit $M(x_M; y_M)$ le milieu du segment [AC] alors:

$$x_M = \frac{x_A + x_C}{2} = \frac{0+4}{2} = \frac{4}{2} = 2 = x_E \text{ et } y_M = \frac{y_A + y_C}{2} = \frac{-4+4}{2} = \frac{0}{2} = 0 = y_E$$

Les point M et E ont même coordonnées alors E est le milieu de [AC].

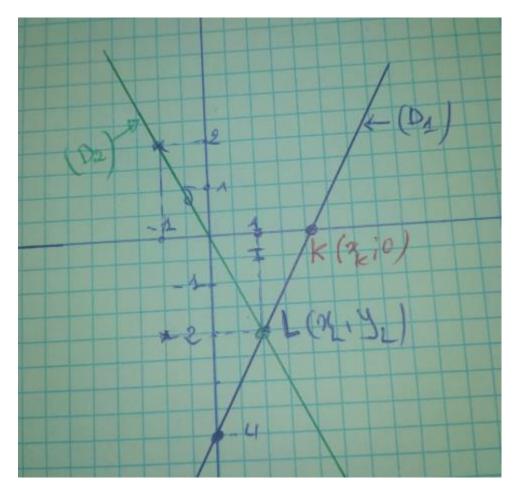
3- L'équation réduite de la droite (AC)s'écrit sous la forme : y = mx + b

$$m = \frac{y_A - y_C}{x_A + x_C} = \frac{8}{4} = 2 \ alors \ y = 2x + p. \ Or \ A(0; -4) \in (AC) \ alors \ y_A = 2x_A + p \ par \ suite - 4 = 2 \times 0 + p \ d'où \ p = -4$$

L'équation réduite de la droite (AC) est : y = 2x - 4.

4- a) on a (
$$\Delta$$
): $y = \frac{-1}{2}x + 1$ et $E(2,0)$ alors : $Si \ x = x_E = 2$ alors $y = \frac{-1}{2} \times 2 + 1 = -1 + 1 = 0 = y_E$

d'où le point E apparient à la droite (Δ) par suite la droite (Δ) passe par le point E.

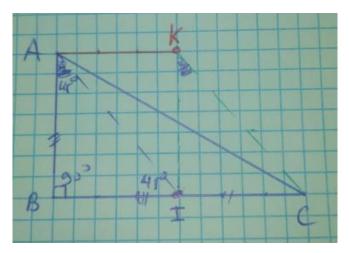

b) on
$$a : (AC) : y = 2x - 4$$
 et $(\Delta): y = \frac{-1}{2}x + 1$. comme $2 \times \frac{-1}{2} = -1$ alors $(\Delta) \perp (AC)$.

Puisque (Δ) est perpendiculaire à [AC] en son milieu alors (Δ) est la médiatrice de [AC].

5- L'équation réduite de la droite (L) s'écrit sous la forme : y = ax + b.

Puisque (L) paralléle à (AC)donc a=2 alors y=2x+b. Or B(3;0) \in (L) alors $y_B=2x_B+b$ par suite $0=2\times 3+b$ 0=6+b donc b=-6. d'où l'équation réduite de la droite (L) est : y=2x-6.

6- La représenation de (D_1) et (D_2) dans un même repère (O,I,J)



Exercice 4

- 1- voir la figure ci dessous.
- 2- Puisque I est le milieu de [BC] alors $\overrightarrow{BI} = \overrightarrow{IC}$ d'où le point C est l'image du point I par la translation T.
- 3- On a I et C sont respectives les images des points B et C alors l'image de (BI)est (IC) et puisque les deux droites (BC)et (BI)sont confondus alors ils ont même images d'où l'image de (BC)est (BC).
- 4- Puisque K est l'image de A par la translation T alors le quadrilatère AKIB est un parallélogramme.

$$BI = \frac{BC}{2} = \frac{2AB}{2} = AB$$
 et $\widehat{ABK} = 90^{\circ}$ alors le quadrilatère AKIB est un carré.

5- ABI est un triangle rectangle isocèle en B alors $\widehat{BAI} = 45^\circ$, et puisque les points I, K et C sont respectives les images des points B, A et I alors l'imagede l'angle \widehat{BAI} est l'angle \widehat{IKC} d'où $\widehat{IKC} = \widehat{BAI} = 45^\circ$.

