اولى علوم تجريبية مدة الانجاز: ساعتان

فرض محروس رقم 1 الدورة 2 ذ.عبد العالى ايت الحسن ***25-03-2014 الثانوية التأهيلية ابن ماجة ـ تالوين السنة الدراسية: 2013- 2014

موضوع الكيمياء (6.5 نقط)

نعاير حجما $V_1=10~\text{mL}$ من محلول ايونات الحديد \overline{II} تركيزه C_1 مجهول بوآسطة محلول برمنغنات البوتاسيوم

 $C_2=1.2 \text{ mol/L}$ تركيزه المولي ($K^+_{(aq)} + MnO^-_{4 (aq)}$)

1-انجز تبيانة المعايرة مع تحديد اسماء الادوات الزجاجية المستعملة <mark>(1ن)</mark>

2-عين المزدوجات المشاركة في التفاعل ثم اكتب المعادلة الكيميائية الحصيلة . (1ن)

3- كيف يمكن تعيين التكافؤ ؟(1ن)

4-عند التكافق حجم المحلول المضاف هو: Ve=6,8 mL

أ- انشىء جدول التقدم لتطور المجموعة الكيميائية عند التكافؤ, حدد التقد الاقصى Xm (1ن) ب- حدد كمية مادة ايونات الحديد | المعايرة . (1ن)

 C_1 أحسب التركيز المولى C_1

موضوع الفيزياء 1 (5.5 نقط)

1ن

نصل مربطي محرك قوته الكهرمحركة E'=7,2V ةمقاومته الداخلية $r'=11\Omega$ بمولد للتوتر . $r=1,2\Omega$ ومقاومته الداخلية E=16V

1 ــ أعط تبيانة الدارة الكهربائية مبينا عليها أجهزة القياس اللازمة لقياس القدرة المكتسبة من طرف المحرك . 1ن

2 ـ أنجز الحصيلة الطاقية للدارة واستنتج شدة التيار المار في الدارة .

3 _ أحسب :

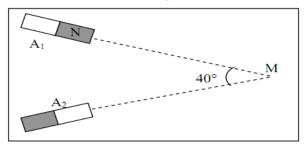
0.5ن . القدرة الكهربائية $oldsymbol{artheta}_{
m e}$ المكتسبة من طرف المحرك $oldsymbol{\perp}$

ب _ القدرة الكهربائية _u التي يمنحها المحرك /

0.5ن ج ــ القدرة الحرارية ر⊲ المبددة بمفعول جول في الدارة .

د ــ مردود المحرك . <u>1ن</u>

4 ـ خلال مدة اشتغال $\Delta t = 2h45 \, min$ ، حدد الطاقة الكهربائية المكتسبة من طرف المحرك والطاقة الميكانيكية والطاقة المبددة بمفعول جول . _____


موضوع الفيزياء 2 (8 نقط)

زء 1

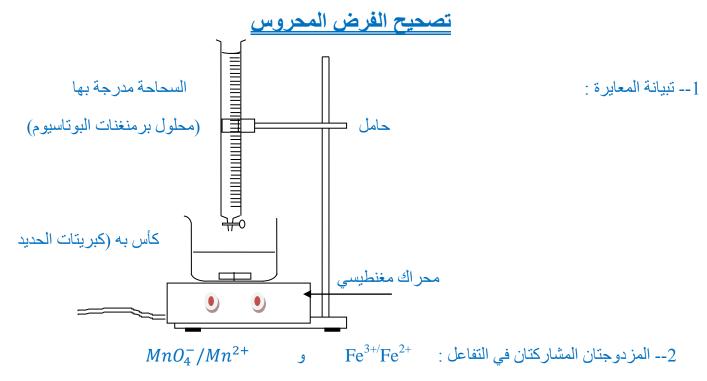
نعتبر مغنطيسين A1 و A2 مماثلين موضوعين كما يبين الشكل جانبه: يحدث كل مغنطيس مجالا مغنطسيا في النقطة M شدته 3.5.10⁻³T

 $ec{B}_{\scriptscriptstyle T} = ec{B}_{\scriptscriptstyle 1} + ec{B}_{\scriptscriptstyle 2}$ - مثل متجهتی المجال $ec{B}_{\scriptscriptstyle 1}$ و کذا <mark>(1ن)</mark>

 \vec{B}_{τ} احسب شدة المجال المغنطيسي الكلى الكلى 2-


____زء 2

نعتبر سلكين موصلين مستقيميين لا نهائيين F1 و F2 متوازيان تفصل بينهما المسافة d , يمر بهما تياران كهربائيان شدتهما على التوالى 1 و 2 منحاهما من الامام الى الخلف بالنسبة للورقة (اختراق الورقة).


نريد تحديد مميزات المجال المغنطيسي المحدث من طرف هذين التيارين على المستوى المتعامد مع السلكين بالنقطة Ο الموجودة على \mathbf{F}_1 من \mathbf{G}_2 و \mathbf{G}_1 من

- u₀=4π.10⁻⁷ (SI) - d=5cm - d₂=3 cm - d₁=4 cm - l₂=30 A - l₁=40 A

- 1- اعط تعبير شدة المجال المغنطيسي الذي يحدثه التيار I₁ بدلالة d1 و I₁ و سابانقطة O (1ن)
- 2- احسب الشدتين B₂ و B₂ لمتجهتي المجالين المغناطيسيين المحدثين على التوالي من طرف 1₁ و 1 بالنقطة O (1ن)
 - 3- مثل المتجهتين B₁ و B₂ بالسلم _ 1 cm --- 0.1 mT (1ن) (O , \overline{i} , \overline{j}) اكتب احداثيات المتجهتين \overline{B}_1 و \overline{B}_2 في المعلم (-4 <mark>(1ن)</mark>
 - والمتجهة الكلية \overline{B}_T بالنقطة \overline{B}_T و \overline{B}_T والمتجهة الكلية \overline{B}_T بالنقطة \overline{B}_T النقطة \overline{B}_T
 - $\overline{B_T}$ مثل المتجة $\overline{B_T}$ في المعلم واحسب شدتها (1ن)

وفقك الله وزادك في العلم بسطة

 $MnO_4^- + 8H^+ + 5Fe^{2+} o Mn^{2+} + 5Fe^{3+} + 4H_2O$: المعادلة الحصيلة للتفاعل المعادلة الحصيلة التفاعل المعادلة المعادلة الحصيلة التفاعل المعادلة ال

3-- يمكن تعيين التكافؤ بتغير لون الخليط التفاعلي حيت يتحول عند لحظة التكافؤ الى لون البرمنغنات البنفسجي

4-- أ - الجدول الوصفي:

الحالة	التقدم	MnO_{4}^{-} +	$5 Fe^{2+} +$	8 <i>H</i> ⁺ -	$\rightarrow Mn^{2+}$	$+ 5Fe^{3+}$	$+4H_{2}O$
البدئية	0	$\operatorname{ni}(MnO_4^-)$	$ni(Fe^{2+})$		0	0	
الوسيطة	X	ni(<i>MnO</i> ₄ ⁻)- X	$ni(Fe^{2+})-5.X$	\Box /	X	5X	
عند	Xm	$ni(MnO_4^-)$ -Xm	$ni(Fe^{2+})$ -5Xm	\Box / \Box	Xm	5Xm	
التكافؤ		=0	=0	/			

m Xm= $m ni}(MnO_4^-)=C_2.Ve=8.16.10^{-3}$ m mol التقدم الاقصى m Xm= $m ni}(MnO_4^-)-Xm=0$ التقدم الاقصى m Xm= $m ni}(Fe^{2+})=5Xm=5^*8.16.10^{-3}=10.8.10^{-3}$ m mol m : II ك-4

 $C1 = \frac{\text{ni}(Fe^{2+})}{\text{V1}} = 4.08 \text{ mol/L}$ اذن $\text{ni}(Fe^{2+}) = 5 \text{Xm} = 5 \text{ ni}(MnO_4^-) = \text{C}_1 \text{V}_1$. : عند التكافؤ لدينا $\text{ni}(Fe^{2+}) = 5 \text{Xm} = 5 \text{ ni}(MnO_4^-) = \text{C}_1 \text{V}_1$

1-تــبيانة الدارة

2-- الطاقة التي يمنحها المولد تستهلك في المحرك

اي :

 $UpN.I.\Delta t = (E-rI).I.\Delta t = E'.I.\Delta t + r'.I^2.\Delta t$. ومنه We = Wu + Wj

$$($$
 وبالتالي نجد أن $I=\frac{E-E'}{r+r'}=0.72~A$ وبالتالي نجد أن

$$Pe=U_{M}.I=(E'+r'.I).I=10.88 w$$
 : القدرة المكتسبة من طرف المحرك : -3

$$Pu=E'I=5.18w$$
 : القدرة النافعة التي يمنحها المحرك : -3

$$P_j=(r+r^2)I^2=6.32 \text{ w}$$
 : الطاقة المبددة في الدارة كلها

$$\rho = \frac{Pu}{Rc} = 0.47 = 47\%$$
 : عردود المحرك : 3


$$We=Pe~\Delta t=10.88*2.75=29.92~wh=107712~J$$
 : ططاقة المكتسبة من طرف المحرك : 4

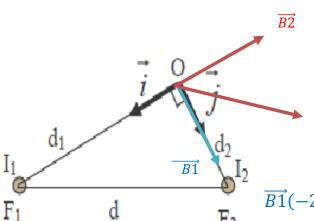
 $Wu=Pu.~\Delta t= 14.245~wh=51282~J$ الطاقة الميكانيكية (النافعة): Wj=P'j. $\Delta t = r'.I^2 \Delta t = 15.68 \text{wh} = 56453.76 \text{ J}$

الطاقة المبددة في المحرك :.

موضوع الفيزباء 2

1-التمثيل بدون سلم:

B_T شدة المجال -2


$$B_T^2 = B_1^2 + B_2^2 + 2.B_1.B_2.\cos(180-40)$$
 انن $\overrightarrow{BT} = \overrightarrow{B1} + \overrightarrow{B2}$ لدينا

$$B_{T}^{2}$$
=2 B_{1}^{2} (1 +cos(140)) =0.47 B_{1}^{2} اي B_{T}^{2} =2 B_{1}^{2} +2. B_{1}^{2} .cos(140) $\underline{B_{T}}$ =1.71.10⁻³ \underline{T} وبالت

: 2 الجزء

$${
m B}_1 = rac{\mu 0}{2\pi} \cdot rac{I1}{d1}$$
 : تعبير شدة المجال : -1 ${
m B1} = rac{4\pi.10^{-7}}{2\pi} \cdot rac{40}{4.10^{-2}} = 0.2 {
m mT}$: حساب شدة كل من المجالين : -2

$$1=rac{4\pi.10^{-7}}{3\pi}.rac{40}{110^{-2}}=0.2$$
mT : حساب شدة كل من المجالين -2

$$B2 = \frac{4\pi.10^{-7}}{2\pi} \cdot \frac{30}{3.10^{-2}} = 0.2mT$$
 2cm و B1 و B2 به 3 المعلم ($0,\vec{i},\vec{j}$) المعلم ($0,\vec{i},\vec{j}$) المعلم ($0,\vec{i},\vec{j}$) المعلم ($0,\vec{i},\vec{j}$) عند المجالين في المعلم ($0,\vec{i},\vec{j}$)

 $\overrightarrow{B1}(0; 2.10^{-4})$ بتعبیر اخر $\overrightarrow{B1} = \text{B1}.\vec{j} = 2.10^{-4}.\vec{j}$

$$\overrightarrow{B1}(-2.10^{-4};0)$$
 بتعبیر اخر $\overrightarrow{B2}=-\mathrm{B2}.\overrightarrow{1}=-2.10^{-4}.\overrightarrow{1}$

$$\overrightarrow{BT} = \overrightarrow{B1} + \overrightarrow{B2} = -2.10^{-4}.\overrightarrow{1} + 2.10^{-4}.\overrightarrow{1}$$
 : العلاقة المتجهية : -3

$$B_T^2 = B_1^2 + B_2^2 = 2.$$
 $B_1^2 = 2.83.10^{-3}$ T : يتالك المغنطيسي الكلي : شدة متجهة المجال المغنطيسي الكلي

 \overrightarrow{RT}