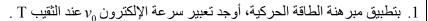
المستوى مدة الإنجاز: ساعتان

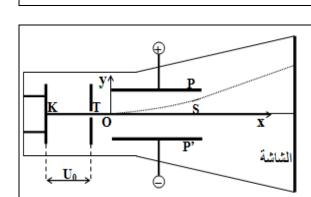

تمرین 1

ندخُل في مسعر سعته الحرارية $\mu_c = 200 \mathrm{JK}^{-1}$ درجة حرارته θ_0 ، كتلة من الماء $m_1 = 100 \mathrm{g}$ درجة حرارتها $\theta_1 = 25^{\circ}\mathrm{C}$ تحت الضغط الجوى. عند التوازن الحراري تكون درجة الحرارة للمجموعة (المسعر + الماء) $\theta_f = 24^{\circ}\mathrm{C}$.

- 1- إعط تعبير الطاقة الحرارية التي اكتسبها المسعرة
- 2-. إعط تعبير الطاقة الحرارية التي التي فقدتها كتلة الماء.
 - θ_0 استنتج قيمة درجة حرارة المسعر البدئية
- 4- ندخل في المسعر السابق قطعة من الجليد كتلتها $m_2 = 60$ و درجة حرارتها $m_2 = 10^{\circ}$ تحت الضغط الجوي. عند التوازن الحراري تستقر درجة الحرارة عند $\theta_{\rm f}^2 = 0^{\circ}$.
 - 4-1- بين أن قطعة الجليد تنصهر جزئيا.
 - 4-2- أوجد كتلة الجليد التبقية عند التوازن.
 - معطيات: الحرارة الكتلية للماء: الحرارة الكتلية للماء: -
 - الحرارة الكتلية للجليد : Cg=2,10 KJ/Kg.K
 - الحرارة الكامنة لإنصهار الجليد Lf =335 KJ/Kg

تمرین 2

يبعث مدفع إلكترونات لراسم التذبذب إلكترون, فيدخل, من الثقب K بدون سرعة بدئية, مجالا كهرساكن ناتجا عن التوتر U_0 المطبق بين الصفيحتين الرأسيتين و التي تفصل بينهما المسافة d=1cm. تنطلق حزمة الإلكترونات من K بسرعة ضعيفة بمكن اعتبار ها منعدمة


- $v_0 = 5930 km.s^{-1}$ ما قيمة التوتر U_0 الذي يجب تطبيقه للحصول على سرعة
 - $T_{\rm c}$ احسب تغير طاقة الوضع الكهرساكنة لإلكترون عند انتقاله من K
 - 4. بين أن حركة الإلكترون عند انتقاله من T إلى O حركة مستقيمية منتظمة.
- P و المسافة بين \widetilde{E} بين صفيحتين أفقيتين و متوازيتين P و P طبق بينهما توترا كهربائيا \widetilde{E} بين صفيحتين أفقيتين و متوازيتين S المسافة بين S المسافة بين S و S هو S . S و تخرج الإلكترونات من المجال الكهرساكن عند الموضع S أرتوبها في المعلم S و تخرج الإلكترونات من المجال الكهرساكن عند الموضع S أرتوبها في المعلم S أرتوبها في المعلم S أرتوبها في المعلم و تخرج الإلكترونات من المجال الكهرساكن عند الموضع S أرتوبها في المعلم S أرتوبها في المعلم و تخرج الإلكترونات من المجال الكهرساكن عند الموضع S أرتوبها في المعلم و تخرج الإلكترونات من المجال الكهرساكن عند الموضع S أرتوبها في المعلم و تخرج الإلكترونات من المجال الكهرساكن عند الموضع S أرتوبها في المعلم و تخرج الإلكترونات من المجال الكهرساكن عند الموضع S أرتوبها في المعلم و تخرج الإلكترونات من المجال الكهرساكن عند الموضع و تخرج الإلكترونات و تخريرات و
 - \overrightarrow{F} المطبقة على إلكترون داخل المجال أ- أعط مميزات القوة الكهرساكنة أ- أعط مميزات القوة الكهرساكنة
 - . S و O بين ΔE_{pe} و استنتج ΔE_{pe} المطبقة على إلكترون عند انتقاله من ΔE_{pe} و استنتج
 - ج بتطبيق انحفاظ الطاقة الكلية, احسب سرعة الإلكترون عند الموضع .

 $e = 1,6.10^{-9} C$ و الشحنة الابتدائية $m_x = 9,11.10^{-31} kg$ نعطى: كتلة الإلكترون

تمرین 3

. نذيب حجما V(HCl) = 4,8 المن غاز كلورور الهيدروجين في $V_{
m S} = 200$ من الماء فنحصل على محلول S لحمض الكلوريدريك

- 1- أعط صيغة كلورور الهيدروجين ما هي المزدوجة حمض قاعدة الموافقة له .
 - 2- ما هو دور الماء ؟ و ما هي مزدوجة الماء المشاركة في هذا التفاعل .
- 3- أكتب نصفي المعادلتين الموافقتين للمزدوجتين السابقتين ثم استنتج معادلة التفاعل الحاصل.
- $_{-}$ 4- أحسب كمية المادة البدئية $_{n_0}$ لغاز كلورور الهيدروجين و استنتج التركيز المولى للمحلول $_{-}$
 - $_{
 m C}$ أحسب تركيز كل من الأيونات الموجودة في المحلول $_{
 m C}$
 - . $V_m = 24 \text{ l.mol}^{-1}$: نعطي

