الفيـــــزياء 12,5 نقطة

نعتبر المجموعة الممثلة في الشكل جانبه و المكونة من:

- $_\Delta=2igl(10^{-3}kg.m^2)$ وعزم قصورها R=10cm بكرة شعاعها
 - كرية F صغيرة كثلتها ${f m} = {f 200g}$ شعاعها ${f r_0}$ قابلة للانزلاق على سكة ABCD .
 - الجزأين AB=1m و CD=0,5m مستقيمين و مائلين
- الجزء C دائري شعاعه ${f r}$ حيث ${f R}={f AB}$ و مركزه ${f O}$ خيط غير قابل للامتداد وكتلته مهملة،لف جزء منه على البكرة وشدة طرفه الحر بالكرية

الخط الأفقي

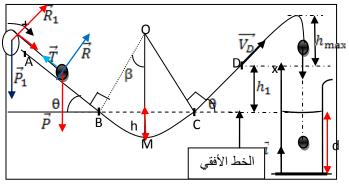
- **A.** عند اللحظة $\mathbf{t_0}$ نحرر الكرية من الموضع **A** بدون سرعة بدئية فتنزلق على الجزء **AB** بدون احتكاك لتصل عند اللحظة $\mathbf{t_1}$ إلى الموضع $\mathbf{t_0}$ نعطي $\mathbf{t_0}$ نعطي $\mathbf{t_0}$ على الموضع **B** بسرعة $\mathbf{t_0}$ بسرعة $\mathbf{t_0}$ نعطي $\mathbf{t_0}$ نعطي $\mathbf{t_0}$
 - 1. أجرد القوى المطبقة على الكرية و البكرة P ؟ 0,75
- 2. أحسب السرعة الزاوية للبكرة في الموضع **B** ثم حدد عدد الدورات المنجزة من طرف البكرة خلال انتقال الكرية من **A** إلى **B** ئن
 - 3. حدد شغل وزن الكرية خلال انتقاله من **A** إلى **B** ما طبيعته ؟ **1**ن
 - 4. حدد $f{T}$ عند الموضع B عند الموضع 4. حدد $f{T}$ عند الموضع
 - $ec{m{v}}_{ extsf{D}}$ عند اللحظة \mathbf{t}_{1} يتقطع الخيط فتتابع الكرية حركتها على الجزء BC بدون احتكاك ،و تغادر السكة عند الموضع D بسرعة .
 - دورات $oldsymbol{t}_1$ حدد $oldsymbol{\mathcal{M}}$ عزم مزدوجة المقاومة التي تخضع لها البكرة بعد اللحظة $oldsymbol{t}_1$ علما أنها تتوقف بعد انجازها ل
 - **1.** عند اللحظة \mathbf{t}_2 تحتل الكرية الموضع **M** نقرن به زاوية $\boldsymbol{\beta}$ أحسب شغل وزن الكرية عند الانتقال من **B** إلى \mathbf{t}_2
 - 3. أوجد تعبير السرعة V_M للكرية عند الموضع M بدلالة Φ_0 و Φ_0 أحسب Φ_0
- 4. بين أن التماس يتم باحتكاك بين الجزء ${f CD}$ و الكرية علما ${f V}_D={f V}_C$ ثم استنتج شدة قوة المكافئة للاحتكاك

. $\overrightarrow{m{F_a}}$ داخل الماء تحت تأثير قوة الاحتكاك الذي يمكن نمذجتها ب القوة $ec{m{f}} = m{kv} ec{m{i}}$ و دافعة ارخميدس

$$F_a =
ho$$
. V . g و g = 10 N/Kg و $ho_F^{} = 8870 Kgm^{-3}$ و $ho_{H_20}^{} = 1 gcm^{-3}$ نعطي

1ن

- 1. أحسب سرعة الكرية لحظة اصطدامها مع الماء $oldsymbol{1}$
- 1,5 لكي تصل الكرية إلى قعر الحوض تستغرق مدة زمنية $\Delta t = 4s$ أحسب سرعة الكرية داخل الماء Δt
 - د. حدد قیمة معامل التناسب \mathbf{k} ثم استنتج شغل القوة \overline{f} ما طبیعته ؟


الكيمـــاء 6,5 نقطة

- $m{V_0} = m{200mL}$ من كلورور الحديد ، صيغته $FeCl_3$ في الماء، فنحصل على محلول $m{m_0} = m{10g}$ حجمه. $m{A}$
 - $M(FeCl_3) = 162g/mol$ نعطي نعطي التركيز المولي للمذاب $\mathbf{1}$ ن نعطي 1
 - أحسب التراكيز المولية الفعلية للأنواع الناتجة عن ذوبان هذا المركب في الماء.

- و تركيزه S_1 نضيف إلى المحلول S_1 حجما $V_1=100m$ من محلول مائي و تركيزه S_1 الكتلي. S_1 الكتلي $CaCl_2$ و تركيزه الكتلي $CaCl_2$ الكتلي $CaCl_2$ الكتلي $C_m=10g/L$
 - 0,75 $CaCl_2$ المركب المركب معادلة ذوبان المركب 1.
 - 2. أحسب التراكيز المولية الفعلية للأنواع الكيميائية الموجودة في الخليط 1,25ن نعطي $M(CaCl_2) = 110g/mol$
- ر. يشغل $oldsymbol{n}$ مول من غاز الحجم V تحت الضغط $oldsymbol{P}=oldsymbol{5bar}$ نثبت درجة الحرارة ونغير الحجم بحيث يأخذ القيم التالية $rac{oldsymbol{v}}{2}$ و $rac{oldsymbol{v}}{100}$
 - 1. أحسب ضغط الغاز بالنسبة لكل حالة $oldsymbol{1}$ ن
- 2. نعتبر كمية معينة من الهواء عند درجة حرارة ثابتة بحيث يتزايد حجمها ب 10mL ويتناقص ضغطها بالنصف أحسب الحجم البدئي للهواء **1**ن

الفيــــزياء

عناصر الاجابة

الجزء **A**

- 1. جرد القوى أنظر الشكل
- $oxed{B}$ السرعة الزاوية للبكرة عند وصول الكرية الى الموضع $oxed{w}_{
 m B} = rac{
 m V_B}{
 m R} = 30 {
 m rad/s}$

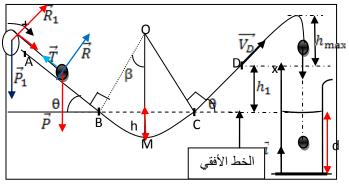
$$3\Delta \theta = \frac{AB}{R} = 10$$
tr ادن $AB = R. \Delta \theta$ عدد الدورات لدينا

- **3.** شغل وزن الجسم $W(\vec{P}) = mgABsin\theta = 1j$ شغل محرك
 - 4. حسابT شدة توتر الخيط

$$\frac{1}{2}mv_B^2 - \frac{1}{2}mv_A^2 = W(\vec{P}) + W(\vec{R}) + W(\vec{T})$$
 بتطبيق مبرهنة الطاقة الحركية نجد

ادن $V_A = \mathbf{0} m/s$ الكرية انطلقت بدون سرعة بدئية $W(\overrightarrow{R}) = \mathbf{0} j$ ادن

$$\frac{1}{2}mv_B^2 = mgAB\sin\theta - T.AB$$
و منه فان $\frac{1}{2}mv_B^2 = W(\vec{P}) + W(\vec{T})$


$$T = \frac{2mgABsin\theta - mV_B^2}{2AB} = 0.1N$$

القدرة اللحظية للقوة \vec{T} لدينا $\mathcal{P}_{\vec{T}}=\vec{T}.\vec{V}_B=T.V_B\cos\pi=-T.V_B$ لان متجهة القوة و متجهة السرعة لهما منحيين متعاكسين

- و تركيزه S_1 نضيف إلى المحلول S_1 حجما $V_1=100m$ من محلول مائي و تركيزه S_1 الكتلي. S_1 الكتلي $CaCl_2$ و تركيزه الكتلي $CaCl_2$ الكتلي $CaCl_2$ الكتلي $C_m=10g/L$
 - 0,75 $CaCl_2$ المركب المركب معادلة ذوبان المركب 1.
 - 2. أحسب التراكيز المولية الفعلية للأنواع الكيميائية الموجودة في الخليط 1,25ن نعطي $M(CaCl_2) = 110g/mol$
- ر. يشغل $oldsymbol{n}$ مول من غاز الحجم V تحت الضغط $oldsymbol{P}=oldsymbol{5bar}$ نثبت درجة الحرارة ونغير الحجم بحيث يأخذ القيم التالية $rac{oldsymbol{v}}{2}$ و $rac{oldsymbol{v}}{100}$
 - 1. أحسب ضغط الغاز بالنسبة لكل حالة $oldsymbol{1}$ ن
- 2. نعتبر كمية معينة من الهواء عند درجة حرارة ثابتة بحيث يتزايد حجمها ب 10mL ويتناقص ضغطها بالنصف أحسب الحجم البدئي للهواء **1**ن

الفيــــزياء

عناصر الاجابة

الجزء **A**

- 1. جرد القوى أنظر الشكل
- $oxed{B}$ السرعة الزاوية للبكرة عند وصول الكرية الى الموضع $oxed{w}_{
 m B} = rac{
 m V_B}{
 m R} = 30 {
 m rad/s}$

$$3\Delta \theta = \frac{AB}{R} = 10$$
tr ادن $AB = R. \Delta \theta$ عدد الدورات لدينا

- **3.** شغل وزن الجسم $W(\vec{P}) = mgABsin\theta = 1j$ شغل محرك
 - 4. حسابT شدة توتر الخيط

$$\frac{1}{2}mv_B^2 - \frac{1}{2}mv_A^2 = W(\vec{P}) + W(\vec{R}) + W(\vec{T})$$
 بتطبيق مبرهنة الطاقة الحركية نجد

ادن $V_A = \mathbf{0} m/s$ الكرية انطلقت بدون سرعة بدئية $W(\overrightarrow{R}) = \mathbf{0} j$ ادن

$$\frac{1}{2}mv_B^2 = mgAB\sin\theta - T.AB$$
و منه فان $\frac{1}{2}mv_B^2 = W(\vec{P}) + W(\vec{T})$

$$T = \frac{2mgABsin\theta - mV_B^2}{2AB} = 0.1N$$

القدرة اللحظية للقوة \vec{T} لدينا $\mathcal{P}_{\vec{T}}=\vec{T}.\vec{V}_B=T.V_B\cos\pi=-T.V_B$ لان متجهة القوة و متجهة السرعة لهما منحيين متعاكسين

ت ع نجد
$$\mathcal{P}_{\vec{\tau}} = -T.V_B = 0.3w$$
 قدرة مقاومة

الجزء B

1. عند اللحظة ${\rm t}_1$ تكون سرعة الزاوية هي ${
m m w_B}={
m m 30rad/s}$ و عند اللحظة النهائية تتوقف البكرة ${
m m w_f}={
m m 0}$ تحت تأثير عزم المزدوجة المقومة ${
m m M}$

بتطبيق مبرهنة الطاقة الحركية بين اللحظة t₁ و اللحظة النهائية نجد:

ادن:
$$\mathbf{w_f} = \mathbf{0}$$
 و $n = 10$ tr و $m = 10$ tr احن: $m = 10$ tr و $m = 10$ tr احن: $m = 10$ tr و $m = 10$ tr احن: $m = 10$ tr و $m = 10$ tr احن: $m = 10$ tr و $m = 10$ tr و $m = 10$ tr احن: $m = 10$ tr $m = 10$ tr

2. عند اللحظة t₂ تحتل الكربة النقطة Μ المحدد بالزاوية 2

تعبير شغل وزن الجسم لدينا $oldsymbol{h} = oldsymbol{W}(ec{P}) = oldsymbol{mgh}$ الارتفاع الدي نزل به الجسم انظر الشكل أعلاه

$$\theta = \beta$$
 :حيث $(OM \perp BC \circ OB \perp AB)$ من خلال الشكل لدينا $h = r(1 - cos\beta) = \frac{AB}{2}(1 - cos\beta)$ حيث

$$W(\overrightarrow{P}) = mg\frac{AB}{2}(1-cos\theta) = 0,5J$$
 و منه فان

M عند الموضع عند الموضع V_M

بتطبيق مبرهنة الطاقة الحركية بين الموضعين **B** و **B** حيث تخضع الكرية إلى وزنها فقط : و منه فان $\frac{1}{2}mV_M^2 - \frac{1}{2}mV_B^2 = W(\vec{P}) = mg\frac{AB}{2}(1-cos\theta)$

$$V_{M} = \sqrt{V_{B}^{2} + gAB(1 - cos\theta)} = 3.2m/s$$

 $W(\vec{R}) \neq 0J$ النبين أن التماس يتم بالاحتكاك نبين أن التماس يتم بالاحتكا

$$\frac{1}{2}mV_{D}^{2} - \frac{1}{2}mV_{C}^{2} = W(\vec{P}) + W(\vec{R}) = -mgCDsin\theta + W(\vec{R})$$

$$\frac{1}{2}m\frac{V_C^2}{9} - \frac{1}{2}mV_C^2 = \frac{1}{2}m\left(\frac{-8}{9}V_C^2\right) = -mgCDsin\theta + W(\overrightarrow{R})$$

$$W(\vec{R}) = -\frac{4}{9}mV_C^2 + mgCDsin\theta$$
 ::

تحديد السرعة V_{C} بما أن الاحتكاكات مهملة على الجزء BC ادن V_{C} ادن:

$$W(\vec{R}) = -\frac{4}{9}mV_B^2 + mgCDsin\theta = -0.3J \neq 0$$

$$f=0,6N$$
 : ادن $W(ec{R})=-f.\mathit{CD}$ ادن المكافئة للاحتكاكات لدينا

الجزء C

1. سرعة الاصطدام بالماء

أتناء سقوط الكرية تخضع لوزنها فقط ادن

بتطبيق مبرهنة الطاقة الحركية بين الموضعين القصوي h_{max} و سطح الماء

سرعة الكرية عند الارتفاع القصوي
$$V_h^2=0$$
 سرعة الكرية لحظة الاصطداء و $V_h^2=0$ سرعة الكرية عند الارتفاع القصوي

$$h_1 = extit{CDsin} heta$$
 و $h_{max} = h = 1m$ و أنظر الشكل حيث $rac{1}{2}mV_f^2 = mg(h_1 + h_{max})$

$$V_{\rm f} = 4,6 \,\mathrm{m/s}$$
 ت ع $V_{\rm f} = \sqrt{2 \,\mathrm{g} (\mathrm{CD} \mathrm{sin} \theta + \mathrm{h})}$

2. تحديد سرعة الكرية

نعلم أن :
$$oldsymbol{v} = rac{d}{\Delta t}$$
 سرعة الكرية داخل الماء

لنحدد أولا d المسافة المقطوعة خلال المدة $\Delta t = 4s$ أنظر الشكل

$$v=rac{d}{\Delta t}=0$$
,125 m/s ومنه $d=rac{V_{
m H_2\,0}}{S}=0$,5 m : لدينا $V_{
m H_2\,O}={
m S.\,d}$ دينا

$$\sum \vec{F} = \vec{0}$$
 : بماأن سرعة الكرية ثابتة فان .

$$\overrightarrow{F_a} + \overrightarrow{f} + \overrightarrow{P} = \overrightarrow{0}$$

بالإسقاط على المحور $V_{\rm F}=rac{m}{
ho_{\rm F}}$ مع $mg=
ho_{H_2\,0}V_{\rm F}+kv$ نجد: $-{
m P}+{
m F}_{\rm a}+{
m f}$ حجم الكرية

$$k=15,8(SI)$$
 ت ع $k=rac{mg-
ho_{H_2}orac{m}{
ho_{ ext{F}}}}{v}$ شغل القوة $W(ec f)=-kvd$ ادن: $W(ec f)=-kvd$

الكيمـــــــياء

Λ

$$FeCl_2
ightarrow +3Cl^- + Fe^{3+}$$
 $FeCl_2$ معادلة الذوبان .1

$$C_M=\mathbf{0}, \mathbf{31} mol/L$$
 ت ع $C_M=rac{m_0}{V_0\,M(FeCl_2)}$ التركيز المولي للمذاب

2. التراكيز المولية الفعلية للأنواع الموجودة في المحلول

 Cl^- و Fe^{3+} : الأيونات الموجودة في المحلول هي

دن: Fe^{3+} من Cl^- من Imol من Imol من Imol من Imol دن:

$$[Fe^{3+}] = 1C_M = 0.31mol/L$$

 $[Cl^-] = 3C_M = 0.93mol/L$

.B

1. معادلة ذوبان المركب **CaCl**₂

$$CaCl_2 \rightarrow 2Cl^- + Ca^{2+}$$

حساب التراكيز المولية الفعلية للأنواع الموجودة في الخليط

 Fe^{3+} , Ca^{2+} ; Cl^- , الأيونات الموجودة في الخليط

أيون الحديد الثالث *Fe*³⁺

$$[Fe^{3+}] = \frac{n(Fe^{3+})}{V_0 + V_4} = \frac{C_M \cdot V_0}{V_0 + V_4}$$

$$[Fe^{3+}] = 0.21 \text{mol/L}$$

أيون الكالسيوم **Ca**²⁺

$$[Ca^{2+}] = \frac{n(Ca^{2+})}{V_0 + V_1} = \frac{\frac{c_m}{M(Cacl_2)} \cdot V_1}{V_0 + V_1} = \frac{C_m \cdot V_1}{M(Cacl_2)(V_0 + V_1)}$$

$$[Ca^{2+}] = 0,03mol/L$$

أيون الكلور *, -cl*

 $FeCl_2$ و المركب $CaCl_2$ و المركب Lacce

$$[Cl^{-}] = \frac{\mathbf{n_{1}}(Cl^{-}) + \mathbf{n_{2}}(Cl^{-})}{V_{0} + V_{1}} = \frac{3C_{M} \cdot V_{0} + 2\frac{C_{m} \cdot V_{1}}{M(CaCl_{2})}}{V_{0} + V_{1}}$$

$$[Cl^{-}] = 0,67mol/L$$
 ت ع

حساب الضغط

بماأن درجة الحرارة ثابتة فان الغاز يخضع لقانون بويل ماريوط أي P.V =ثابتة

حالة 1 نغير الحجم V حيث $rac{v}{2}=rac{v}{2}$ ويأخد الضغط القيمة التالية $rac{\mathbf{P_1}}{2}$ و بتطبيق قانون بويل ماريوط

$$P_1V_1 = P.V \Longrightarrow P_1\frac{V}{2} = P.V$$

$$P_1 = 10 bar$$
. ت ع $P_1 = 2. P$

 $P_3 = 100$. P = 500bar و $P_2 = 4$. P = 20bar بنفس الطريقة نجد

 $rac{P}{2}$ درجة الحرارة ثابتة الحجم V يتزاد ب 10m أي V أي V و الضغط P يتناقص بالنصف أي .2

V=10mL ت ع 2.V=V+10mL ومنه فان $P.V=rac{P}{2}(V+10mL)$ ت ع