یت باها	الثانوية التأهيلية أ	ليسم الله الرحمان الرحيم			الأستاذ: رشيد جنكل			
نيابة أشتوكة أيت باها		عناصر الإجابة لفرض محروس رقم 2 الدورة الثانية		القسم: السنة الثانية من سلك البكالوريا				
المدة: ساعتان / 21/04/2017		السنة الدراسية : 2017 / 2016			الشعبة : علوم فيزيانية 2			
سلم التنقيط		عناصر الإجابة	درجة صعوبته	طبيعة السؤال	السوال	التمرين		

سلم التنقيط	عناصر الإجابة	درجة صعوبته	طبيعة السؤال	السوال	التمرين
⁰ 0,25 + ⁰ 0,25	 رسم تبيانة تجريبية + تحديد قطبية العمود: بماأن الأمبيرمتر يشير الى قيمة موجبة والمربط com للإمبير متر مرتبط بصفيحة الرصاص Pb فإن هذه الأخيرة (صفيحة الرصاص) تمثل قطب سالب و صفيحة الفضة Ag تمثل قطب موجب 	XX	أرسم ثم حدد	1	
ύ 0,25 ύ 0,25	 منحى النيار: يخرج من القطب الموجب (صفيحة الفضة Ag) نحو القطب السالب (صفيحة الرصاص Pb) منحى الإلكترونات: عكس منحى النيار الكهربائي أي من صفيحة الرصاص Pb (قطب سالب)الى صفيحة الفضة Ag (قطب موجب) منحى الأيونات: الأيونات الموجبة (الكاتيونات: "K) نفس منحنى التيار الكهربائي 	XX	إستنتج	2	
	والأيونات السالبة (الأنيونات : Cl) عكس منحى النيار الكهرباني				
ပံ 0,25 ပံ 0,25	3. النبيانة الإصطلاحية لهذا العمود : عمود رصاص ـ فضة – Pb(s) / Pb ²⁺ (aq) // Ag ⁺ (aq) / Ag (s) +	X	أعط	3	
<i>ن</i> 0,5 ن 0,5	4. التفاعل الحاصل عند كل الكترود عند المحاصل عند كل الكترود الرصاص (الأنود): تحدث الأكسدة وفق المعادلة التالية : ${ m Pb}({ m s}) \leftrightarrow { m Pb}^2 + 2 \ e^-$ عند الكترود الفضة (الكاتود) : يحدث الإخترال وفق المعادلة التالية : ${ m Ag}^+({ m aq}) + \ e^- \leftrightarrow { m Ag}({ m s})$	XX	أكتب	4	المادة : الكيمياء التعرين الأول
ن 0,25 ن 0,5	$2{ m Ag^+(aq)} + { m Pb(s)} \leftrightarrow 2{ m Ag(s)} + { m Pb}^2$. المعادلة الحصيلة للتفاعل هي: $2{ m Ag^+(aq)} + { m Pb(s)} \leftrightarrow 2{ m Ag(s)} + { m Pb}^2$ إنجاز جدول وصفي لهذه المعادلة	X XX	إستنتج أعط الجدول	5	التنقيط: 7,00 ن
0,75 ن/ تعبير حرفي 0,25 ن/ تطبيق عددي	$Q_{ m ri}$ الموافق للمعادلة : $Q_{ m ri}=rac{[Pb^{2+}]}{[Ag^+]^2}=rac{c_1}{c_2{}^2}=40$	XX	أحسب	6	المدة : 40 دقيقة
0,25 ن / تعبير حرفي 0,25 ن / تطبيق عددي	7. من خلال الجدول الوصفي لتفاعل الأكسدة : $Pb(s) \leftrightarrow Pb^{2+} + 2 \ e^-$ نجد أن $x = \frac{I \ \Delta t}{2F}$ ومنه $x = \frac{\varrho}{2F}$ ومنه $x = \frac{n \ e^-}{2}$ و وبالتالي : $x = \frac{1}{2}$ $x = \frac{1}{2}$ ومنه $x = \frac{1}{2}$	XXX	أحسب	7	
0,25 ن / تعبير حرفي 0,25 ن / تطبيق عددي	8. حساب تغیر کمیة مادة الرصاص ($Pb(s)$: $Pb(s)$ میات تغیر کمیة مادة الرصاص ($Dn(s)$	XXX	احسب	8	
0,25 ن / تعبير حرفي 0,25 ن / تطبيق عددي	$n \ (Pb) = rac{m \ (Pb)}{M \ (Pb)}$: لدينا (المستهلكة) الدينا يا $\frac{m \ (Pb)}{M \ (Pb)}$: لدينا $m \ (Pb) = n \ (Pb) \ . \ M \ (Pb)$: $m \ (Pb) = 1.86 \ . \ 10^{-3} \ . \ . \ 207 \ . \ 2 = 0.38 \ g$ تطبيق عددي : $m \ (Pb) = 1.86 \ . \ 10^{-3} \ . \ . \ 207 \ . \ 2 = 0.38 \ g$	XX	إستنتج	9	
1 ن	Pb^{2+} ، Ag^+ بعد تمام الإشتغال : Pb^{2+} ، Ag^+ بعد تمام الإشتغال : Pb^{2+}] $= [Pb^{2+}]_i + \frac{X}{v} = C_1 + \frac{X}{v}$ تطبیق عددی : $Pb^{2+}]_f = 0,11 \ \mathrm{mol} \cdot \mathrm{L}^{-1}$ نظبیق عددی : $Pb^{2+}]_f = 0,11 \ \mathrm{mol} \cdot \mathrm{L}^{-1}$ $= C_2 - \frac{2X}{v}$ $= C_2 - \frac{2X}{v}$ تطبیق عددی : $Pag^+]_i = [Ag^+]_i - \frac{2X}{v} = C_2$ تطبیق عددی : $Pag^+]_f = 3,14 \cdot 10^{-2} \ \mathrm{mol} \cdot \mathrm{L}^{-1}$	XXX	أحسب	10	
0,5 చ,5	$v_{z}(t)$ و ومنه ومنه $v_{z}(t)$ و ومنه ومنه ومنه $v_{z}(t)$ و ومنه ومنه ومنه ومنه ومنه ومنه ومنه وم	XXX	أوجد	1	
ن 0,5 ن ,5	z(t) و $x(t)$ و ومنه $x(t)$ ومنه $x(t)$ و $x(t)$ و $x(t)$ و ومنه و ومنه $x(t)$ و ومنه ومنه و المراح ومنه ومنه و المراح ومنه ومنه ومنه ومنه ومنه ومنه ومنه ومنه	XXX	إستنتج	2	المادة : الفيزياء التمرين الثاني التنقيط:7,00 ن
ن0,5	$z(t)$ فنحصل على $z(t)$ بنتناج معادلة المسار : $z=f(x)$ ، نعوض $z(x)=\frac{-g}{V_0^2cosa}$ z^2+tg z 0 . z 4 نخصل على $z(x)=\frac{-g}{V_0^2cosa}$	XX	أوجد	3	المدة : 40 دقيقة

	0,75 ن	$z_{P}(x_{P}) = \frac{-g}{v_{0}^{2}cos^{2}} x^{2} + tg \alpha \cdot x_{P} + h_{0} = 0$ عند النقطة $z_{P}(x_{P}) = \frac{-g}{v_{0}^{2}cos^{2}} x^{2} + tg \alpha \cdot x_{P} + h_{0} = 0$ عند النقطة $z_{P}(x_{P}) = \frac{g}{v_{0}^{2}cos^{2}} x^{2} + tg \alpha \cdot x_{P} + h_{0} = 0$ عند النقطة $z_{P}(x_{P}) = \frac{g}{v_{0}^{2}cos^{2}} x^{2} + tg \alpha \cdot x_{P} + h_{0} = 0$ $z_{P}(x_{P}) = \frac{g}{v_{0}^{2}cos^{2}} x^{2} + tg \alpha \cdot x_{P} + h_{0} = 0$ $z_{P}(x_{P}) = 0$ $z_{P}(x_{$	XX	عبر ثم احسب	4	
	0,5 ن	$z_1(x_1) = \frac{-g}{V_0^2 cos^{lpha}} x^2 + tg lpha \cdot x_1 + h_0 \qquad \qquad z_1(x_1) = \frac{-g}{V_0^2 cos^{lpha}} x^2 + tg lpha \cdot x_1 + h_0 \qquad \qquad : z_1 \ \ z_1 = 2,98 m \qquad \qquad : $ تطبیق عددی : $z_1 = 2,98 m = 2,98 \cdot (1,80+0,70) = 0,48 m = 48 cm$ إذن	XXX	בננ	5	
		ن تمتبل المخططات ل $V_{ m X}$ و $V_{ m Y}$ بدلالة الزمن $V_{ m Y}$	XX	مثل	6	
	0,75 ن	7 . إيجاد إحداثيات السرعة عند النقطة F قمة المسار : $V_{xF}=V_0\cos\alpha=17,67~{ m m.s}^{-1}$ عند النقطة $V_{yF}=V_{xF}=V_{xF}+V_y^2=17$,67 $V_{xF}=\sqrt{V_{xF}^2+V_y^2}=17$ هو $V_{yF}=\sqrt{V_{xF}^2+V_y^2}=17$ هو $V_{yF}=\sqrt{V_{xF}^2+V_y^2}=17$ هو $V_{yF}=\sqrt{V_{xF}^2+V_y^2}=17$ هو $V_{yF}=\sqrt{V_{xF}^2+V_y^2}=17$.	XX	أوجد	6	
	0,5 ن	P . حساب المدة الزمنية $t_{ m p}$ المستغرقة بين A و A لاينا حسب المعادلة الزمنية للحركة : $X(t)=V_0 \cdot \cos lpha \ t = rac{X_P}{V_0 \cdot \cos lpha}$ عند النقطة A لدينا A لدينا A الدينا A الدينا A الدينا A الدينا A الدينا A الدينا A الدين A الدينا A الدينا A الدينا A الدينا A الدينا A الدين عددي : A الدينا A الدين A الد	XX	أحسب	8	
	2 × ÷ 0,5	$\mathbf{v}_2 = \sqrt{\frac{4 \mathrm{e} \mathrm{U}}{\mathrm{m}_2}} \mathbf{`} \mathbf{V}_1 = \sqrt{\frac{4 \mathrm{e} \mathrm{U}}{\mathrm{m}_1}} .1$	X	عبر	1	
		2. القوة \overrightarrow{F} انجدابية مركزية وحسب قاعدة اليد اليمنى فأن منحى متجهة المحال المعتطيسي \overrightarrow{B} سيكون نحور الخلف $+$ التمثيل	XX	حدد	2	المادة: الفيزياء
	0,5 ن	\vec{V} و \vec{V} عمودیتان $P=\vec{F}.\vec{V}=0$ د قوم لونتز \vec{V} عمودیتان	XX	حدد	3	التمرين الثالث التنقيط:7,00 ن
	0,5 ن / الطريقة	${ m E_C}=$ cte ومنه ${ m ecc} { m dE_c} { m dt} = 0$ ومنه ${ m P}={ m dE_c \over dt}$.4	XX	بین	4	المدة : 40 دقيقة
	ن 0,75	$ec{a}=rac{dv}{dt}\;ec{u}\;+rac{v^2}{r}\;ec{n}\;$.5 $ec{a}=rac{dv}{dt}\;ec{u}\;+rac{v^2}{r}\;ec{n}\;$.5 $ec{a}=rac{dv}{r}\;ec{n}\;$ ومنه $v=$ cte ومنه $v=$ ومنه $v=$ وبالتالي $ec{a}\;$ أنحدابية مركزية	XX	أوجد	5	
	1 ن	${f r}=rac{mV}{ q B}={f cte}$ ومنه ${f a}=rac{ q VB}{m}$ ${f r}$ نجد ان ${f r}=rac{mV}{m}$ ومنه نمنتنج ان المسار دانري ومنه نمنتنج ان المسار دانري بما أن ${f E}_{C}={f cte}$ أي ${f m}$ ${f v}^2={f cte}$ فان ${f v}={f cte}$ وبالتالي حركة الأيونات داخل الحجرة (${f C}_{C}$) دانرية منتظمة	XXX	بین	6	
	2 × ن 0,5	$\mathbf{r}_2 = \frac{m_2 V_2}{4eB}$. $\mathbf{r}_1 = \frac{m_1 V_1}{4eB}$	XX	أستنتج	7	
	0,5 ن	8. القائدة من هذا التركيب هو فرز الايونات H_e^{2+2} عن الايونات H_e^{2+2} باالاعتماد على الكنلة	X	ما الفائدة	8	
1	1ن	با ب	XX	أجسب	9	

القانون الثاني للامتحان او المبدا العقلي:

« في معلم مرتبط بالقسم اذا كان مجموع المعارف والمهارات والكفايات تتركز في نقطة وحيدة "العقل"، تكون حركة القلم حركة مستقيمة منتظمة » رشيد جنكل

كل معلم يتحقق فيه هذا المبدا يسمى معلما جنكاليليا

الله ولي التوفيسق

حظ سعيد للجميع

الثانوية التأهيلية أيت باها	لبسم الله الرحمان الرحيم	الأستاذ: رشيد جنكل
مديرية أشتوكة أيت باها	فرض محروس رقم 2 الدورة الثانية	القسم: 2 علوم فيزيائية 2
المدة: ساعتان / 21/04/2017	السنة الدراسية : 2017 / 2016	المادة: الفيزياء والكيمياء

تعطى الصيغ الحرفية (مع التاطير) قبل التطبيقات العددية يسمح بأستعمال الألة الحاسبة العلمية غير القابلة للبرمجة

الكيمياء (7 نقط) (40 دقيقة)

التنقبط

0,75ن

0,25ن

1 ن

0,5ن

0,5 ن

1 ن

◄ التمرين الأول: عمود رصاص - فضة (40 دقيقة)

لإنجاز عمود نتوفر في المختبر على صفيحة الرصاص (s) ، صفيحة الفضة (Ag (s) ، محلول نتراث الرصاص (Pb(s) ، صفيحة الفضة ($C_2 = 0.05 \text{ mol.L}^{-1}$) تركيزه $C_2 = 0.05 \text{ mol.L}^{-1}$ وقنطرة أيونية تحتوي على الأيونات ((K^+, CI^-)) .

بعد إنجاز العمود نركب بين الصفيحتين على التوالي موصل أومي و أمبيرمتر حيث أن المربط com للأمبيرمتر مرتبط بصفيحة الرصاص Pb ، يشتغل العمود لمدة 1h مولدا تيارا شدته $I = 100 \, \text{mA}$ نعطى : $I = 9,65 \cdot 10^4 \, \text{C} \cdot \text{mol}^{-1}$

1. أرسم التبيانة التجربية ثم حدد قطبية العمود معللا جوابك

0,75 ن 2. إستنتج منحى مختلف حملات الشحنات (الإلكترونات والأيونات)

3. أعط التبيانة الإصطلاحية لهذا العمود

4. أعطى نصفى معادلتى التفاعل عند كل إلكترود

0,75 ن 5. إستنتج المعادلة الحصلية للتفاعل ثم أنشي الجدول الوصفي لهذا التفاعل

0,5ن أحسب قيمة خارج التفاعل البدئي Q_{ri} الموافق للمعادلة

1 ن x بعد تمام مدة الإشتغال ع. أحسب قيمة تقدم التفاعل x

8. أحسب تغير كمية مادة الرصاص (Pb(s ماذا تستنتج (هل تتناقص أم تتزايد كمية الرصاص)

 $M(Pb) = 207.2 \text{ g.mol}^{-1}$ هي المولية للرصاص هي علما أن الكتلة المولية للرصاص هي .

 $V = 200 \, \text{mL}$ بعد تمام الإشتغال ، علما أن للمحلولين نفس الحجم Pb $^{2+}$ ، Ag $^+$ بعد تمام الإشتغال ، علما أن للمحلولين نفس الحجم

التنقيط

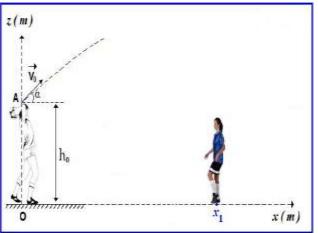
الفيزياء (14 نقطة) (40 دقيقة)

◄ التمرين الثاني: دراسة حركة الكرة في مجال الثقالة: (7,00 نقط) (40 دقيقة)

في مقابلة لكرة القدم بين الفريقين 2 ع ر أ و 2 ع أ ف بالثانوية التأهيلية أيت باها ، خرجت الكرة الى التماس ، والإعادتها

إلى الميدان ، يقوم أحد اللاعبين برمها من خط التماس بكلتا يديه لتمريرها فوق رأسه .

لدراسة حركة الكرة ، نهمل تأثير الهواء وننمذج الكرة بنقطة $g = 10 \text{ m.s}^2$ مادية . ونأخد


A تغادر الكرة يدي اللاعب في نقطة t=0 تغادر الكرة يدي اللاعب في نقطة $h_0=2$ m توجد على ارتفاع $\overrightarrow{V_0}$ يكون اتجاهها زاوية $\alpha=25^\circ$ مع المستوى الأفقي انظر الشكل جانبه

 h_1 = 1,80 m نعتبر لاعبا أخر من فربق الخصم طول قامته x_1 = 12 m وبقف على بعد x_1 = 12 m من اللاعب الذي يرمى الكرة

g و N_0 بدلالة $V_z(t)$ و $v_z(t)$ و بتطبيق القانون الثاني لنيوتن أوجد المعادلات الزمنية و $v_z(t)$

2. استنتج المعادلات الزمنية (x(t) و z(t

 ${f g}$ و ${f V}_0$ و ${f h}_0$ و ${f h}_0$ و ${f h}_0$

1 ن

1 ن

1ن

4. يقفز اللاعب الخصم بمسافة $h'=70\,\mathrm{cm}$ نحو الأعلى ولم ينجح في التصدي للكرة فترتطم هذه الأخيرة بالأرض عند نقطة P أفصولها P أعط تعبير السرعة البدئية بدلالة P و P ثم أحسب قيمتها

على أي إرتفاع h₂ من رأس الخصم تمر الكرة ؟

مثل مخططات السرعة : $v_x = f(t)$ و $v_y = f(t)$ بسلم مناسب

7. أوجد احداثيات السرعة عند النقطة F ، قمة المسارثم استنتج منظمها

8. أحسب المدة الزمنية tp المستغرقة من طرف الكرة من لحظة انطلاقها الى غاية ارتطامها بالأرض

◄ التمرين الثالث: استغلال المجال المغنطيسي لفرز الايونات: (7,00 نقط) (40 دقيقة)

التقنية التالية:

لانحاز التجربة نحتاج الى الجهاز المبين في الشكل جانبه والمتكون من حجرتين : حجرة التسريع وحجرة الانحراف .

تدخل هذه الايونات عند النقطة T_1 ، بسرعة يمكن اعتبارها منعدمة حيت يتم تسريعها بواسطة التوتر $U=V_{P1}-V_{P2}$ مطبق بين صفيحة الدخول P_1 وصفيحة الخروج P_2

تغادر الايونات ذات شحنة q وذات كتلة m صفيحة الخروج ،

عند الثقب T_2 بسرعة بدئبة $\frac{2 \ q \ U}{m}$ عند الثقب T_2 بسرعة بدئبة على هذه الصفيحة لتدخل مجالا مغناطيسيا منتظما متجهته \overrightarrow{B} عمودية على مستوى التبيانة. فتنحرف نحو اللاقط T_2

(شاشة مستشععة)الموجود في نفس مستوى الصفيحة P2

 T_2 عند الثقب m_2 عند الكتلة m_2 عند الأيونات ذات الكتلة m_1 و عن السرعة v_1 لايونات ذات الكتلة v_2 عند الثقب 1.

(D)

 \overrightarrow{B} . حدد معللا جوابك منحى متجهة المجال المغنطيسي لكي تتجه الأيونات نحو اللاقط (C) ممثلا كل من

3. حدد قيمة P قدرة قوة لونتز

4. بين أن الطاقة الحركية ثابتة

5. بين أن متجهة التسارع انجذابية مركزية

6. بين أن حركة الأيونات داخل الحجرة (D) دائرية منتظمة

U و e على التوالي بدلالة r_1 والشعاع r_2 لمسار الايونات H_e^{2} والايونات H_e^{2} على التوالي بدلالة H_e^{2} و H_e^{2} و الكتلة

8. ما الفائدة من هذا الجهاز؟

9. لتكن A_1 نقطة اصطدام الايونات H_e^{2+2} باللاقط H_e^{2+3} و A_1 نقطة اصطدام الايونات H_e^{2+4} باللاقط A_1 (شاشة مستشععة)، أحسب المسافة A_1

نعطی : B=0,5T , U=6.10⁴v , e=1,6.10⁻¹⁹C:

القانون الثاني للامتحان او المبدا العقلي:

« في معلم مرتبط بالقسم اذا كان مجموع المعارف والمهارات والكفايات تتركز في نقطة وحيدة "العقل"، تكون حركة القلم حركة مستقيمة منتظمة » رشيد جنكل

كل معلم يتحقق فيه هذا المبدا يسمى معلما جنكاليليا

2 T حجرة التسريع T1

حجرة الانحراف

اللسه ولسى التوفيسسق

حظ سعيد للجميع

1ن 0,5ن

1ن

1ن

0,75ن

0,75ن 0,5ن

> 0,5ن 0,5ن

0,75ن

1 ن 1 ن

0,5ن

00,0

1ن