السنة الدراسية 2014-2015 المستـــوي 2^{émé} BAC:

فرض منزلي رقم 3 الدورة 1 مدة الانجاز: ساعتين

الكيمياء

تستطيع المواد الحافظة أن تزيد في مدة حفظ الأغذية و ذلك بحمايتها من الأضرار التي قد تحدث لها جراء الكائنات المجهرية. تعطى للمواد الحافظة الموجودة في الأغذية و المشروبات رموز كـ E297، E200 .

حمض البنزويك E210) C₆H5-COOH) و بنزوات الصوديوم E211) C₆H5-COONa) يستعملان كمواد حافظة غذائية في الصناعة كونهما مبيدات للفطريات و مضادة للبكتيريا . نجدهما بالخصوص في المشروبات الحاملة للعبارة « light »

1- تفاعل حمض البنزويك مع الماء .

m PH نذيب كتلة $m m_0=122mg$ من حمض البنزويك في حجم $m M_0=100~mL$ من الماء المقطر فنحصل على محلول $m C_0$ تركيزه $m C_0$ بقياس m pH=3.1

- S_0 احسب تركيز المحلول S_0 ؟
- 1-2- اكتب معادلة تفاعل حمض البنزويك مع الماء .
- . التقدم الموافق لهذا التحول الكيميائي بدلالة $m C_0$ و $m V_{00}$ و التقدم عند التوازن $m X_{eq}$
 - au النهائي au ، التقدم النهائي au
 - C_6H_5 -COOH / C_6H_5 -COO $^-$ احسب تابثة الحمضية للمزدوجة
- 6-1 ارسم مخطط الهيمنة للمزدوجة C_6H_5 -COOH / C_6H_5 -COOH. هل هذا يتفق مع نتيجة السؤال 4? C_6H_5 -COOH. وستنتج النوع المهيمن في المحلول C_6H_5 -COOH.

نضيف إلى المحلول $Na^+_{(aq)} + HO^-_{(aq)}$ فيشير الهيدروكسيد الصوديوم $Na^+_{(aq)} + HO^-_{(aq)}$ فيشير الهيدروكسيد القيمة $Na^+_{(aq)} + HO^-_{(aq)}$

- 2-1- دون أي حساب حدد النوع الكيميائي المهيمن في المزدوجة "C6H5-COOH / C6H5-COO لحمض البنزويك . 2-2- اكتب معادلة التفاعل بين حمض البنزويك و محلول هيدروكسيد الصوديوم.
- $K_{\rm e}$ و $K_{\rm e}$ اكتب تعبير ثابتة التوازن K للتحول بين حمض البنزويك و محلول هيدروكسيد الصوديوم. ثم احسب قيمتها المعطيات :

 $pK_e(H_2O/OH^-)=14$: الجداء الايوني للماء : $M(C_6H_5\text{-COOH})=122\ g.mol^{-1}$ الكتلة المولية لحمض البنزويك

الغيزياء

نعتبر التركيب الكهربائي جانبه و المكون من مولد قوته الكهرمحركة E=10V، موصل اومي مقاومته $D\cdot R=100\Omega$ صمام ثنائي مثالي ، وشيعة معامل تحريض $D\cdot R=100\Omega$ محرك مرتبط بخيط غير مدود يمر بمجرى بكرة علق $D\cdot R=100\Omega$

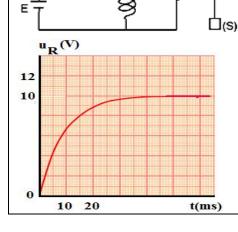
بطرفه الحر جسما وزنه P=0,1 N

. و الموصل الأومي بدلالة التيار و نقوم بمعاينة تغيرات التوتر بين مربطي الموصل الاومي بدلالة الزمن، فنحصل على المبيان التالى:

 u_{R} أثبت المعادلة التفاضلية للتوتر u_{R}

. عبير وأعط تعبير $u_{R}(t)=E.\frac{R}{R+r}(1-e^{-t/ au})$ تحقق أن $u_{R}(t)=E.\frac{R}{R+r}$

au وجد من المبيان اللحظة التي يصل فيها التوتر إلى au63% من قيمته القصوى ثم استنتج قيمة au

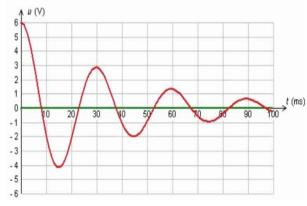

 $_{
m L}$ - أحسب $_{
m r}$ قيمة المقاومة الداخلية للدارة و استنتج قيمة معامل تحريض الوشيعة $_{
m L}$.

2-عند فتح القاطع يدور المحرك ويسحب الجسم (S) نحو الاعلى .

2-1-فسر مصدر الطاقة التي تمكن المحرك من الاشتغال , حدد منحى التيار والفروع التي يمر فيها.

2-2- ما الارتفاع الذي يصله الجسم (S) اذا تحولت كل الطاقة المختزنة في الوشيعة الى طاقة ميكانيكية . يو اسطة المحرك ؟

2-2- - تبين التجربة ان الجسم يرتفع بمسافة h=3,5cm , احسب مردود التحول .



الغيزياء 2

عند اللحظة t=0 نركب بين مربطي وشيعة معامل تحرضها الذاتي L و مقاومتها r ، مكثفا سعته C=0,25 ، مشحونا بواسطة مولد قوته الكهرمحركة E=6,0 ، يمثل الشكل أسفله تغيرات التوتر $u_{\rm C}(t)$ بين مربطي

المحتف . 1 ا : ۱ ا

- 1- ما نظام الذبذبات الملاحظ ؟ علل جوابك.
- 2- كيف نفسر تناقص وسع الذبذبات مع مرور الزمن ؟ ماذا تسمى هذه الظاهرة .
 - 3- أوجد المعادلة التفاضلية التي يحققها التوتر $u_{\rm C}(t)$ بين مربطي المكثف.
 - 4- عين مبيانيا قيمة شبه الدور T للذبذبات.
 - 5- نعتبر المقاومة r منعدمة.
 - $u_{\rm C}(t)$ أكتب في هذه الحالة المعادلة التفاضلية التي يحققها التوتر $u_{\rm C}(t)$.
 - $u_{C}(t) = U_{m}.cos(\alpha t + \varphi)$: على هذه المعادلة هو
 - ϕ و α و U_m ما مدلول کل من U_m
 - T_0 حدد تعبير الدور الخاص T_0 .
- $_{-}$ 4- أحسب قيمة $_{-}$ معامل التحريض الذاتي للوشيعة علما أن شبه الدور $_{-}$ $_{-}$ يساوي الدور الخاص $_{-}$.

