السنة الدراسية 2019/2018	فرض محروس رقم 2	الثانوية التأهيلية اولاد سعيد
الاستاذ: عبدالحق الهيري	2 باك علوم فيزيائية	مديرية بني ملال

الكيمياء 7 نقاط

(S) نذيب $V_S=100 \mathrm{mL}$ من محلول للحصول على C_2H_5COOH نذيب C_2H_5COOH من محلول لحمض البر وبانويك تر كيز ه C.

 $\sigma = 62 \text{mS. m}^{-1}$ قياس الموصلية عند $^{\circ}$ C للمحلول (S)أعطى القيمة

- (**0.5**) C = 0.2mol/l هو C = 0.2mol/l لمحلول حمض البروبانويك هو
 - 2- أكتب معادلة التفاعل الحاصل بين حمض البروبانويك مع الماء.(0.5ن)
 - 3- أنشئ الجدول الوصفي لتطور هذا التفاعل. (**0.75**ن)
 - 4- أحسب تراكيز الأنواع الكيميائية في المحلول عند التوازن. **(1.5**ن)
 - أحسب قيمة pH للمحلول (S). (**0.5**ن)
- عبر عن نسبة التقدم النهائي au بدلالة au و au au و au au عند التوازن أحسب au. ماذا تستنتج؟ (1ن)
 - (ن**0.75)** . Kاحسب $[H_3O^+]_{\acute{e}a}$ و C احسب $[H_3O^+]_{\acute{e}a}$
 - المحلول (S) حتى يصبح تركيزه هو $C' = 3,15. \, 10^{-2} mol/l$ ونقيس pH المحلول فنجد -8
 - pH' = 3.2
 - (نau ماذا تستنتج.(au, au) احسب نسبة التقدم النهائي (au, au) قارن (au, au) و (au)
- لتفاعل في المحلول المخفف . قارن K' و K ماذا تستنتج (0.75)ن .b

نعطى عند 25°C:

 $\lambda_{(C_2H_5C00^-)} = 3,6 \text{ mS. } m^2. \text{ } mol^{-1}: \ \lambda_{(H_20^+)} = 35 \text{ mS. } m^2. \text{ } mol^{-1}: \ M(C_2H_5C00H) = 74g. \text{ } mol^{-1}$

الفيزياء 13 نقطة

التمرين الأول (7ن):

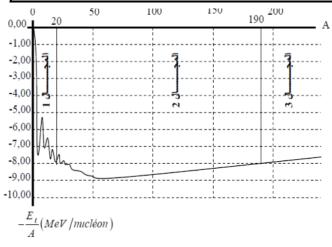
منحني أسطون Aston -I

- 1- حدد انطلاقا من منحنى أسطون مجال النوى المستقرة. (0.25ن)
- 2- عرف تفاعلي الانشطار والاندماج النوويين. (0.5ن)
- 3- أين توجد على المنحنى النوى القابلة للإنشطار، والنوى القابلة للإندماج. (0.5ن)

در اسة تفاعل الانشطار النووي: -II

يستعمل كوقود للمفاعلات النووية بالأساس الاور انبوم 235 والاورانيوم 238 . تمثل المعادلة التالية أحد تفاعلات انشطار

. $^{235}_{92}$ U + $^{1}_{0}$ n $\rightarrow ^{140}_{54}$ Xe + $^{94}_{7}$ Sr + x^{1}_{0} n : 235


- 1- حدد قيمة العددين x و **0.5**(ن**)**
- أحسب الطاقة المحررة خلال هذا التفاعل ب Mev ثم ب الـ (1ن)
 - 3- مثل الحصيلة الطاقية باستعمال مخطط الطاقة. (0.25ن)
- 4- احسب الطاقة الذي ينتجها انشطار 2g من الاورانيوم 235 ب **1**). Mev ا

در اسة تفتت الاور انيوم 234 -III

رتنفتت النواة $^{234}_{92}$ إلى نواة الثوريوم Th وتبعث الدقائق lpha.

- 1- اكتب معادلة التفتت النووي لنواة الاورانيوم 234. (0.5)
- 2- احسب الطاقة الناتجة عن هذا التفتت بالوحدة MeV. (0.5)

- ، t=0 تحتوي على نوى الأورانيوم $m_0=10$ عند اللحظة $m_0=10$ عند اللحظة $t_{1/2}=245500$ عمر نصف الأورانيوم 234 هو
 - أ عرّف زمن عمر النصف لنواة مشعّة.**(0.5**ن**)**
 - ب احسب ثابتة النشاط الإشعاعي λ لنواة الاورانيوم 234 بـ $(\mathbf{0.5})$. ans $^{-1}$
- ج احسب عدد نوى الاور انيوم 234 البدئية N_0 الموجودة في العيّنة عند اللحظة $\mathbf{0.5}$) . \mathbf{t} ($\mathbf{0.5}$)
 - د حدد المدة الزمنية اللازمة لتفتت 90% من نوى الاورانيوم 234 البدئية .(0.5ن)

$$1 MeV = 1,6 \times 10^{-13} J$$
 $1 u = 1,66 \times 10^{-27} kg = 931,5 {\rm MeV/C^2}$ معطیات $M(^{235}_{92}U) = 235 g/mol$ و $N_A = 6,02.\,10^{23} mol^{-1}$

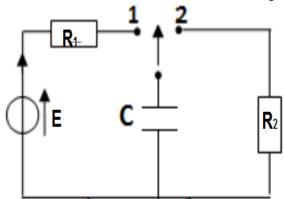
¹⁴⁰ Xe	$^{235}_{92}U$	²³⁴ U	$^{94}_{Z}Sr$	Th	α	${}_{0}^{1}n$	الرمز
139.92164	235,04394	233,99044	93.91536	229,9737	4,00150	1,00866	الكتلة (u)

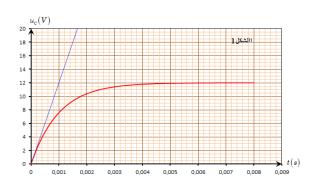
التمرين الثاني (6نقاط):

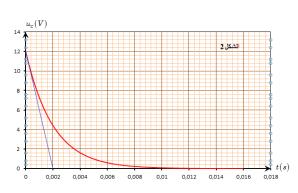
: نستعمل التركيب التجريبي التالي المتكون من \mathcal{C} نستعمل التركيب التجريبي التالي المتكون من

- . E=12V مولد مؤمثل توتره $G \prec$
- R_2 وموصلين أومبين مقاومتهما $R_1=\mathbf{1}K\Omega$ و م $R_1=\mathbf{1}K\Omega$

- در اسة شحن المكثف: نضع قاطع التيار في الموضع 1:


- 1- انقل تبيانة التركيب التجريبي المستعمل مبينا عليها كيفية ربط راسم التذبذب لمعاينة التوتر $u_c(t)$ التوتر بين مربطي المكثف. (0.5)
 - (ن) . $u_c(t)$. اثبت المعادلة التفاضلية التي يحققها التوتر $u_c(t)$. -2
 - 3- يكتب حل المعادلة التفاضلية على الشكل التالي:


$$au_{1}$$
 و جد تعبيري الثابتتين a و $u_{c}(t)=A(1-e^{-rac{t}{ au_{1}}})$. $u_{c}(t)$


حدد ثابتة . (1 حدد ثابتة الرمن (الشكل 1) حدد ثابتة -4 الرمن $au_c(t)$ حدد ثابتة الرمن au_1 واستنتج قيمة au_2 سعة المكثف .

II- تفريغ المكثف: نضع قاطع التيار في الموضع 2:

- ا تكتب على شكل u_c بين أن المعادلة التفاضلية التي يحققها التوتر u_c تكتب على شكل $u_c+ au_2 rac{du_c}{dt}=0$:
 - حل للمعادلة $u_c(t) = E.\,e^{-\frac{t}{\tau_2}}$ حل للمعادلة -2 التفاضلية . (**0.5**)
 - (2 الشكل النوتر $u_c(t)$ بدلالة الزمن $u_c(t)$ -3
 - واستنتج قيمة au_2 ، واستنتج قيمة .i المقاومة R_2 . R_2
- ii. احسب الطاقة الكهربائية المخزونة في المكثف عند اللحظة t=0.004s ن)

