

الامتحان الوطني الموحد للبكالوريا

الدورة العادية 2016 - الموضوع -

NS 22

المركز الوطني للتقويم والامتحانات والتوجيه

$\left\ \left(\right. \right\ $	3	مدة الإنجاز	الرياضيات	المادة
	7	المعامل	شعبة العلوم التجريبية بمسالكها وشعبة العلوم والتكنولوجيات بمسلكيها	الشعبة أو المسلك

تعليمات عامة

- عدد الصفحات: 3 (الصفحة الأولى تتضمن تعليمات ومكونات الموضوع والصفحتان المتبقيتان تتضمنان موضوع الامتحان) ؟
 - يسمح باستعمال الآلة الحاسبة غير القابلة للبرمجة ؟
 - يمكن للمترشح إنجاز تمارين الامتحان حسب الترتيب الذي يناسبه ؟
 - ينبغى تفادي استعمال اللون الأحمر عند تحرير الأجوبة ؟
- بالرغم من تكرار بعض الرموز في أكثر من تمرين ، فكل رمز مرتبط بالتمرين المستعمل فيه ولا علاقة له بالتمارين السابقة أو اللاحقة .

مكونات الموضوع

- يتكون الموضوع من أربعة تمارين و مسألة، مستقلة فيما بينها، و تتوزع حسب المجالات كما يلى:

2.5 نقط	المتتاليات العددية	التمرين الأول
3 نقط	الهندسة الفضائية	التمرين الثاني
3 نقط	الأعداد العقدية	التمرين الثالث
3 نقط	حساب الاحتمالات	التمرين الرابع
8.5 نقط	دراسة دالة عددية وحساب التكامل	مسألة

- بالنسبة للمسألة ، In يرمز لدالة اللوغاريتم النبيري.

الصفحة	
\sim 2	NS 2

الامتحان الوطنى الموحد للبكالوريا - الدورة العادية 2016 - الموضوع - مادة: الرياضيات - شعبة العلوم التجريبية بمسالكها وشعبة العلوم والتكنولوجيات بمسلكيها

التمرين الأول: (2.5 ن)

$$IN$$
 نعتبر المتتالية العددية $u_{n+1}=\frac{3+u_n}{5-u_n}$ و $u_0=2$: المعرفة بما يلي $u_0=1$

$$IN$$
 نكل $u_n < 3$ نكل $u_n < 3$ نكل ثم بين بالترجع أن $u_{n+1} - 3 = \frac{4(u_n - 3)}{2 + (3 - u_n)}$ نكل $u_n < 3$ نكل $u_n < 3$

$$IN$$
 من $v_n = \frac{u_n - 1}{3 - u_n}$ المتتالية العددية المعرفة بما يلي: (2) المتتالية العددية المعرفة بما يلي:

$$n$$
 بدلالة $u_n=rac{1+3v_n}{1+v_n}$ بدلالة $u_n=rac{1+3v_n}{1+v_n}$ بدلالة $u_n=rac{1+3v_n}{1+v_n}$

$$(u_n)$$
 جـ حدد نهایة المتتالیة 0.5

التمرين الثاني: (3 ن)

B(3,1,1) و A(2,1,3) النقط ($(0,\vec{i},\vec{j},\vec{k})$)، النقط معلم متعامد ممنظم مباشر $x^2 + y^2 + z^2 - 2x + 2y - 34 = 0$ و الفلكة (S) و الفلكة (C(2, 2, 1)

$$\overrightarrow{AB} \wedge \overrightarrow{AC} = 2\overrightarrow{i} + 2\overrightarrow{j} + \overrightarrow{k}$$
 أ- بين أن (1 | 0.5

$$(ABC)$$
ب- استنتج أن $2x+2y+z-9=0$ هي معادلة ديكارتية للمستوى 0.5

و أن شعاعها هو
$$\Omega(1,-1,0)$$
 هو النقطة $\Omega(1,-1,0)$ و أن شعاعها هو 6 $\Omega(1,-1,0)$

$$(\Gamma)$$
 وفق دائرة $d(\Omega,(ABC))=3$ بين أن $d(\Omega,(ABC))=3$ بين أن $d(\Omega,(ABC))=3$

(ABC) و العمودي على المستقيم (
$$\Delta$$
) المار من النقطة Ω و العمودي على المستوى (Δ) المار من النقطة (Δ)

$$B$$
 النقطة Γ بين أن مركز الدائرة Γ هو النقطة Γ

التمرين الثالث: (3ن)

0.75

$$z^2 - 4z + 29 = 0$$
: المعادلة C العقدية الأعداد العقدية (1 مجموعة الأعداد العقدية)

نعتبر، في المستوى العقدي المنسوب إلى معلم متعامد ممنظم مباشر $(O,\overrightarrow{e_1},\overrightarrow{e_2})$ ، النقط Ω و B و التي (2 b=5+8i و a=5+2i و $\omega=2+5i$ المحاقها على التوالي هي ω و ω و و a بحيث

$$u = b - \omega$$
 أـ ليكن u العدد العقدي بحيث

$$\arg u \equiv \frac{\pi}{4} [2\pi]$$
 ثم بین أن $u = 3 + 3i$ تحقق من أن

$$(u$$
 يرمز لمرافق العدد العقدي \overline{u}) \overline{u} يرمز لمرافق العدد العقدي 0.25

$$\arg\left(\frac{b-\omega}{a-\omega}\right) \equiv \frac{\pi}{2}[2\pi]$$
 و أن $\Omega A = \Omega B$ ف أن $a-\omega = u$ ثم استنتج أن $a-\omega = u$

$$\frac{\pi}{2}$$
 د۔ نعتبر الدوران R الذي مركزه Ω و زاويته حدد صورة النقطة A بالدوران R

التمرين الرابع: (3ن)

يحتوي صندوق على 10 كرات: أربع كرات حمراء و ست كرات خضراء.

(لا يمكن التمييز بين الكرات باللمس).

نسحب عشوائيا وفي آن واحد كرتين من الصندوق.

1) ليكن A الحدث: " الكرتان المسحوبتان حمراوان " .

$$p(A) = \frac{2}{15}$$
 بین أن

2) ليكن X المتغير العشوائي الذي يربط كل سحبة بعدد الكرات الحمراء المتبقية في الصندوق بعد سحب الكرتين. أـ بين أن مجموعة القيم التي يأخذها المتغير العشوائي X هي $\{4, 5, 5, 5\}$

X بين أن $p(X=3)=\frac{8}{15}$ ثم حدد قانون احتمال المتغير العشوائي

مسألة: (8.5 ن)

1

1.5

0.5

0.75

 $f(x)=2x-2+e^{2x}-4e^x$: بما يلي R بما يلي المعرفة على R المعرفة على الم

 $\lim_{x \to -\infty} f(x) = -\infty$ الما أ- بين أن - (1-I) 0.25

 $-\infty$ بجوار $\left(C_{f}\right)$ بجوار y=2x-2 مقارب للمنحنى $\left(D\right)$ بجوار $\left(D\right)$

 $\lim_{x \to +\infty} f(x) = +\infty \quad \text{ii.} \quad (2 \quad 0.5)$

. بین أن $\sin \frac{f(x)}{x} = +\infty$ ثم أول هندسیا النتیجة $\sin \frac{f(x)}{x} = +\infty$ 0.5

IR نک x کا $f'(x) = 2(e^x - 1)^2$ کا آ- بین آن $f'(x) = 2(e^x - 1)^2$ کا 0.5

(f'(0)=0) ب- ضع جدول تغيرات الدالة f على R (لاحظ أن g 0.25

 $f(\alpha) = 0$ جـ بين أنه يوجد عدد حقيقي وحيد α من المجال $[1, \ln 4]$ بحيث 0.75

وتحت المستقيم (D) على المجال $\ln 4$, + ∞ [وتحت المستقيم (D) على المجال $\ln 4$, + ∞ [وتحت المستقيم (D) على المجال $\ln 4$, + ∞ [المجال $\ln 4$] المجال $\ln 4$

 $\left(0,-5
ight)$ وحيدة زوج إحداثيتيها هو $\left(C_{f}
ight)$ يقبل نقطة انعطاف وحيدة زوج إحداثيتيها هو 0.5

 $(\alpha \approx 1,3)$ و $\ln 4 \approx 1,4$ و المنحنى (C_f) في نفس المعلم (C_f) في نفس المعلم (D) و المنحنى (D)

$$\int_{0}^{\ln 4} \left(e^{2x} - 4e^{x} \right) dx = -\frac{9}{2} \quad \text{أ- بين أن} \quad \boxed{5}$$

و محور (D) و المستقيم (C_f) و محور $x = \ln 4$ معادلته $x = \ln 4$

(E): y''-3y'+2y=0 أ- حل المعادلة التفاضلية (1-II | 0.5

g'(0)=-2 و g(0)=-3 الذي يحقق الشرطين g(0)=-3 و g(0)=-3

 $h(x) = \ln\left(e^{2x} - 4e^x
ight)$: يلي يا الدالة العددية المعرفة على المجال المجال $h(x) = \ln\left(e^{2x} - 4e^x\right)$

R معرفة على h^{-1} أ- بين أن الدالة h تقبل دالة عكسية h^{-1} و أن أن الدالة h

 $\left(h^{-1}\right)'\left(\ln 5\right)$ بـ تحقق من أن $h(\ln 5) = \ln 5$ ثم حدد

ثانوية: عمر بن عبد العزيز المستوى: 2 علوم فيزياء الأستاذ: بنموسى محمد

لسنة 2015 - 2016

تصحيح الامتحان الوطني

.01

. N نعتبر المتتالية العددية $\left(u_n\right)$ المعرفة ب $u_0=2$ و $u_0=2$ لكل المن المتالية العددية المعرفة ب

. N نتحقق أن
$$u_{n+1} - 3 = \frac{4(u_n - 3)}{2 + (3 - u_n)}$$
 كل n كل $u_{n+1} - 3 = \frac{4(u_n - 3)}{2 + (3 - u_n)}$

.
$$u_{n+1} - 3 = \frac{3 + u_n}{5 - u_n} - 3 = \frac{3 + u_n - 15 + 3u_n}{5 - u_n} = \frac{-12 + 4u_n}{2 + (3 - u_n)} = \frac{4(u_n - 3)}{2 + (3 - u_n)}$$
: فينا

.
$$\mathbb N$$
 كلاصة : $u_{n+1} - 3 = \frac{4(u_n - 3)}{2 + (3 - u_n)}$ كلاصة :

- $\mathbf{u}_{\mathbf{u}} < 3$ نبين بالترجع : $\mathbf{u}_{\mathbf{u}} < 3$ نبين بالترجع
 - $\mathbf{n} = \mathbf{0}$ نتحقق أن العلاقة صحيحة من أجل

. $\mathbf{n}=\mathbf{0}$ و منه العلاقة صحيحة من أجل $\mathbf{u}_0=2<3$

- نفترض أن العلاقة صحيحة إلى الرتبة $\, {
 m n} \,$ من $\, {
 m N} \,$ أي $\, {
 m u}_{\rm n} < 3 \,$
 - $u_{n+1} < 3$: نبين أن العلاقة صحيحة للرتبة n+1 أي نبين أن العلاقة صحيحة الرتبة

$$egin{array}{c} 4ig(u_n-3ig)<0 \\ 2+ig(3-u_nig)>0 \end{array} \hspace{0.2cm} \left. egin{array}{c} u_n-3<0 \\ 3-u_n>0 \end{array} \right\}$$
 ومنه $u_n<3$ ومنه

.
$$u_{n+1} < 3$$
 و بالتالي $u_{n+1} - 3 < 0$ و منه نستنتج أن $u_{n+1} - 3 = \frac{4(u_n - 3)}{2 + (3 - u_n)} < 0$ و بالتالي

n+1 إذن : العلاقة صحيحة للرتبة u_n+1 خلاصة : $u_n < 3$.

. N من
$$v_n=\frac{u_n-1}{3-u_n}$$
 و $u_0=2$: المعرفة بما يلي المعرفة بما يلي . $v_n=\frac{u_n-1}{3-u_n}$ لكل

 $rac{1}{2}$ نبين أن المتتالية $\left(\mathbf{v}_{\mathrm{n}}
ight)$ متتالية هندسية أساسها

$$v_{n+1} = \frac{u_{n+1} - 1}{3 - u_{n+1}}$$
 : نینا $\frac{3 + u_n}{5 - u_n} - 1$

$$= \frac{\frac{3 + u_n}{5 - u_n} - 1}{3 - \frac{3 + u_n}{5 - u_n}}$$

$$= \frac{\frac{3 + u_n - 5 + u_n}{5 - u_n}}{\frac{15 - 3u_n - 3 - u_n}{5 - u_n}}$$

لسنة 2015 - 2016

تصحيح الامتحان الوطني

الصفحة

$$\begin{split} &= \frac{-2 + 2u_n}{12 - 4u_n} \\ &= \frac{2}{4} \times \frac{-1 + u_n}{3 - u_n} \\ &v_{n+1} = \frac{1}{2}v_n : 4$$
 و منه : $v_n = \frac{1}{2} \times v_n$ $v_n = \frac{u_n - 1}{3 - u_n}$

 $rac{1}{2}$ فلاصة : المتتالية $\left(\mathrm{v}_{\mathrm{n}}
ight)$ متتالية هندسية أساسها

. N نمن $\mathbf{v}_{n} = \left(\frac{1}{2}\right)^{n}$: نستنتج أن

بما أن : المتتالية $\left(v_{n}\right)$ متتالية هندسية أساسها $\frac{1}{2}$ إذن حدها العام يكتب على الشكل التالي

$$\begin{aligned} v_n &= v_{n_0} \times q^{n-n_0} \; ; \; \left(n_0 = 0 \right) \\ &= v_0 \left(\frac{1}{2} \right)^n \; ; \; \left(v_0 = \frac{u_0 - 1}{3 - u_0} = \frac{2 - 1}{3 - 2} = 1 \right) \\ &= 1 \times \left(\frac{1}{2} \right)^n = \left(\frac{1}{2} \right)^n \end{aligned}$$

. N نکل
$$\mathbf{v}_{n} = \left(\frac{1}{2}\right)^{n}$$
 غلاصة:

. N نبین أن
$$\mathbf{u}_{n} = \frac{1+3\mathbf{v}_{n}}{1+\mathbf{v}_{n}}$$
: نبین أن

n نكتب u بدلالة •

$$u_n = \frac{1+3v_n}{1+v_n} = \frac{1+3\left(\frac{1}{2}\right)^n}{1+\left(\frac{1}{2}\right)^n}$$
 دينا:

لسنة 2015 - 2016

تصحيح الامتحان الوطني

خلاصة :
$$\mathbf{u}_{\mathrm{n}} = \frac{1+3\left(rac{1}{2}
ight)^{\mathrm{n}}}{1+\left(rac{1}{2}
ight)^{\mathrm{n}}}$$
 غير ضرورية حسب السؤال الموالي) خلاصة :

. دينا :
$$\lim_{n \to +\infty} \left(\frac{1}{2} \right)^n = 0$$
 دينا •

.
$$\lim_{n \to +\infty} u_n = \lim_{n \to +\infty} \frac{1+3\left(\frac{1}{2}\right)^n}{1+\left(\frac{1}{2}\right)^n} = \frac{1+0}{1+0} = 1$$
:

 $\lim_{n\to+\infty} \mathbf{u}_{\mathbf{n}} = \mathbf{1}$: خلاصة

. 02

الفضاء منسوب إلى معلم متعامد ممنظم مباشر $(0,\vec{i},\vec{j},\vec{k})$ ، نعتبر النقط A(2,1,3) و B(3,1,1) و B(3,1,1) و الفلكة (S). $x^2 + y^2 + z^2 - 2x + 2y - 34 = 0$: معادلتها دیکارتیة

$$\overrightarrow{AB} \wedge \overrightarrow{AC} = 2\overrightarrow{i} + 2\overrightarrow{j} + \overrightarrow{k}$$
: نبین أن

$$\overrightarrow{AC}$$
 $\begin{pmatrix} 2-2 \\ 2-1 \\ 1-3 \end{pmatrix} = \overrightarrow{AC} \begin{pmatrix} 0 \\ 1 \\ -2 \end{pmatrix}$ و $\overrightarrow{AB} \begin{pmatrix} 3-2 \\ 1-1 \\ 1-3 \end{pmatrix} = \overrightarrow{AB} \begin{pmatrix} 1 \\ 0 \\ -2 \end{pmatrix}$: لدينا

.
$$\overrightarrow{AB} \wedge \overrightarrow{AC} = \begin{pmatrix} 1 \\ 0 \\ -2 \end{pmatrix} \wedge \begin{pmatrix} 0 \\ 1 \\ -2 \end{pmatrix} = \begin{vmatrix} 0 & 1 \\ -2 & -2 \end{vmatrix} \vec{i} - \begin{vmatrix} 1 & 0 \\ -2 & -2 \end{vmatrix} \vec{j} + \begin{vmatrix} 1 & 0 \\ 0 & 1 \end{vmatrix} \vec{k} = 2\vec{i} + 2\vec{j} + \vec{k}$$
 و منه :

 $\overrightarrow{AB} \wedge \overrightarrow{AC} = 2\overrightarrow{i} + 2\overrightarrow{j} + \overrightarrow{k}$: خلاصة

(ABC) نستنتج أن 2x+2y+z-9=0 هي معادلة ديكارتية للمستوى

$$(ABC)$$
 دينا : المتجهة $\overrightarrow{AB} \wedge \overrightarrow{AC} = 2\overrightarrow{i} + 2\overrightarrow{j} + \overrightarrow{k} = \overrightarrow{AB} \wedge \overrightarrow{AC}(2;2;1)$ منظمية على المستوى

$$M(x,y,z) \in (ABC) \Leftrightarrow \overrightarrow{AM}. (\overrightarrow{AB} \wedge \overrightarrow{AC}) = 0$$

$$\Leftrightarrow \begin{pmatrix} x-2 \\ y-1 \\ z-3 \end{pmatrix}. \begin{pmatrix} 2 \\ 2 \\ 1 \end{pmatrix} = 0$$

$$\Leftrightarrow 2(x-2)+2(y-1)+1(z-3)=0$$

$$\Leftrightarrow 2x+2y+z-9=0$$

لسنة 2015 - 2016

تصحيح الامتحان الوطني

لصفحة

(ABC) فلاصة: 2x+2y+z-9=0 هي معادلة ديكارتية للمستوى

...02

لدينا:

$$x^{2} + y^{2} + z^{2} - 2x + 2y - 34 = 0 \Leftrightarrow x^{2} - 2x + 1 - 1 + y^{2} + 2y + 1 - 1 + z^{2} - 34 = 0$$
$$\Leftrightarrow (x - 1)^{2} - 1 + (y + 1)^{2} - 1 + z^{2} - 34 = 0$$
$$\Leftrightarrow (x - 1)^{2} + (y + 1)^{2} + z^{2} = 36 = 6^{2}$$

. ${
m r}=6$ و شعاعها $\Omega(1,-1,0)$ و شعاعها و $\Omega(1,-1,0)$

. r=6 و أن شعاعها $\Omega(1,-1,0)$ هي النقطة (S) هي النقطة على مركز الفلكة

. $d(\Omega,(ABC)) = 3$: نبین أن

 $d(\Omega,(ABC)) = \frac{|2 \times 1 + 2(-1) + 0 - 9|}{\sqrt{2^2 + 2^2 + 1^2}} = \frac{9}{\sqrt{9}} = 3$: لاينا

 $d(\Omega,(ABC)) = 3$ خلاصة:

• نستنتج أن المستوى (ABC) يقطع الفلكة وفق دائرة (Γ) .

 (Γ) بما أن (Γ) يقطع الفلكة وفق دائرة $d(\Omega,(ABC))=3<6$ بين المستوى بما أن وفق دائرة وفق دائرة وفق دائرة بما أن

 (Γ) علاصة : المستوى (ABC) يقطع الفلكة وفق دائرة

03

 Δ المار من النقطة Ω والعمودي على المستقيم (Δ) المار من النقطة Ω والعمودي على المستوى (Δ BC) .

- $\Omega(1,-1,0) \in (\Delta)$ و (ABC) لانها منظمیة علی المستوی $\overrightarrow{AB} \wedge \overrightarrow{AC} = 2\overrightarrow{i} + 2\overrightarrow{j} + \overrightarrow{k}$ و دینا المتجهة المستوی
 - $\left(\Delta
 ight): egin{cases} x=1+2t \ y=-1+2t \ ; \ t\in\mathbb{R}: \infty \end{array} \left(\Delta
 ight)$ هو Δ مثيل بارامتري للمستقيم Δ
 - $egin{aligned} x &= 1+2t \ .\ ig(\Deltaig) : egin{cases} x &= 1+2t \ y &= -1+2t \end{cases}; \ t \in \mathbb{R}: egin{cases} x &= 0 \ \end{array}$ فلاصة x &= 0 خلاصة x &= 0 خلاصة x &= 0

 $oldsymbol{\Psi}_{-}$ نبین أن : مركز الدائرة $oldsymbol{\Gamma}$ هو النقطة

نعلم أن مركز الدائرة هو المسقط العمودي لمركز الفلكة (S) على المستوى (ABC) أي تقاطع المستوى (ABC) و المستقيم (Δ)

$$\begin{split} \mathbf{M} \big(\mathbf{x}, \mathbf{y}, \mathbf{z} \big) \in & \big(\mathbf{ABC} \big) \cap \big(\Delta \big) \Leftrightarrow \begin{cases} \mathbf{M} \in \big(\mathbf{ABC} \big) \\ \mathbf{M} \in \big(\Delta \big) \end{cases} \\ \Leftrightarrow \begin{cases} 2\mathbf{x} + 2\mathbf{y} + \mathbf{z} - 9 = 0 \\ \mathbf{x} = 1 + 2\mathbf{t} \\ \mathbf{y} = -1 + 2\mathbf{t} \\ \mathbf{z} = \mathbf{t} \end{cases} \end{split}$$

تصحيح الامتحان الوطني

اصفحة

$$\Leftrightarrow \begin{cases} 2(1+2t)+2(-1+2t)+t-9=0 \\ x=1+2t \\ y=-1+2t \\ z=t \end{cases}$$

$$\Leftrightarrow \begin{cases} 9t-9=0 \\ x=1+2t \\ y=-1+2t \\ z=t \end{cases}$$

$$\Leftrightarrow \begin{cases} t=1 \\ x=1+2\times 1=3 \\ y=-1+2\times 1=1 \\ z=1 \end{cases}$$

 $\mathrm{B}(3,1,1)$ و المستقيم (Δ) هي النقطة (ABC) ومنه : تقاطع المستوى

 $\mathrm{B}(3,1,1)$ هي النقطة الدائرة

<u>. 03</u>

 $z^2-4z+29=0$: المعادلة ($z^2-4z+29=0$ نحل في مجموعة الأعداد العقدية

 $\Delta = (-4)^2 - 4 \times 1 \times 29 = 16 - 116 = -100 = i^2 \times 10^2 = (10i)^2$: لدينا : Δ نحسب المميز Δ

. $z_2 = \overline{z}_1 = 2 - 5i$ و $z_1 = \frac{4 + 10i}{2} = 2 + 5i$: هما خلي المعادلة هما .

 $S = \{2 + 5i; 2 - 5i\}$: خلاصة عموعة حلول المعادلة هي

نعتبر، في المستوى العقدي (P) المنسوب إلى معلم متعامد ممنظم مباشر $(0,\overrightarrow{e_1},\overrightarrow{e_2})$ النقط Ω و A و A التي ألحاقها على a=5+2i و a=5+2i و a=5+2i و a=5+2i التوالى هي a=5+2i على التوالى التو

 $\mathbf{u} = \mathbf{b} - \mathbf{\omega}$: العدد الحقيقي حيث u العدد الحقيقي

= ميان u مصد مصيي ميد . u = 3 + 3i . • . u = 3 + 3i

. $u = b - \omega = 5 + 8i - (2 + 5i) = 5 + 8i - 2 - 5i = 3 + 3i$ لاينا:

u=3+3i : خلاصة

. $arg(u) \equiv \frac{\pi}{4} [2\pi]$ •

.
$$arg(u) = \frac{\pi}{4} [2\pi]$$
 و منه $u = 3 + 3i = 3(1+i) = [3;0] \times \left[\sqrt{2}; \frac{\pi}{4}\right] = \left[3\sqrt{2}; \frac{\pi}{4}\right]$.

$$arg(\mathbf{u}) \equiv \frac{\pi}{4} [2\pi]$$
 : خلاصة

 $\overline{\mathbf{u}}$ نحدد عمدة العدد العقدي

لدينا:

تصحيح الامتحان الوطني

اصفحة

$$\arg(\overline{\mathbf{u}}) = -\arg(\mathbf{u}) [2\pi]$$
$$= -\arg(\mathbf{u}) [2\pi]$$
$$= -\frac{\pi}{4} [2\pi]$$

$$\operatorname{arg}(\overline{\mathbf{u}}) \equiv \frac{\pi}{4} \left[2\pi \right]$$
 غلاصة:

 $\mathbf{a} - \boldsymbol{\omega} = \overline{\mathbf{u}}$: نتحقق أن

. $a-\omega = a = 5+2i-(2+5i) = 5+2i-2-5i = 3-3i = \overline{u}$ • • •

خلاصة : a – ω – <mark>u</mark>.

. $\operatorname{arg}\left(\frac{\mathbf{b}-\mathbf{\omega}}{\mathbf{a}-\mathbf{\omega}}\right) \equiv \frac{\pi}{2} \left[2\pi\right]$ و $\Omega \mathbf{A} = \Omega \mathbf{B}$: فستنتج أن

ا لدينا:

$$|\mathbf{u}| = |\overline{\mathbf{u}}| \Leftrightarrow |\mathbf{b} - \mathbf{\omega}| = |\mathbf{a} - \mathbf{\omega}|$$

 $\Leftrightarrow \Omega \mathbf{B} = \Omega \mathbf{A}$

و منه : $\Omega A = \Omega B$.

الدينا:

$$arg\left(\frac{b-\omega}{a-\omega}\right) \equiv arg\left(\frac{u}{\overline{u}}\right) \left[2\pi\right]$$

$$\equiv arg\left(u\right) - arg\left(\overline{u}\right) \left[2\pi\right]$$

$$\equiv \frac{\pi}{4} - \left(-\frac{\pi}{4}\right) \left[2\pi\right]$$

$$\equiv \frac{\pi}{2} \left[2\pi\right]$$

$$\operatorname{arg}\left(\frac{\mathbf{b}-\mathbf{\omega}}{\mathbf{a}-\mathbf{\omega}}\right) \equiv \frac{\pi}{2} \left[2\pi\right]$$
 : خلاصة

 $\frac{\pi}{2}$ الذي مركزه Ω و زاويته $\frac{\pi}{2}$.

نحدد صورة النقطة A بالدوران R.

لدىنا

لدينا:

$$(\overrightarrow{\Omega A}, \overrightarrow{\Omega B}) \equiv \arg\left(\frac{b-\omega}{a-\omega}\right) \equiv \frac{\pi}{2} [2\pi]$$
: نعلم أن

و هذا يمثل أن
$$\mathbf{B}$$
 صورة \mathbf{A} بالدوران الذي مركزه Ω و قياس
$$\left\{ \frac{\Omega \mathbf{A} = \Omega \mathbf{B}}{\left(\overrightarrow{\Omega \mathbf{A}}, \overrightarrow{\Omega \mathbf{B}} \right)} \equiv \frac{\pi}{2} \left[2\pi \right]^{\frac{1}{2}} \left\{ \arg \left(\frac{\mathbf{b} - \mathbf{\omega}}{\mathbf{a} - \mathbf{\omega}} \right) \equiv \frac{\pi}{2} \left[2\pi \right] \right\}$$

 $\frac{\pi}{2}$ وزاویته هو

تصحيح الامتحان الوطني

الصفحة

 ${f b}=5+8{f i}$ التي لحقها ${f R}$ بالدوران ${f R}$ هي النقطة ${f B}$ التي لحقها

طريقة 2: (غير مرغوب فيها حسب أجوبة الأسئلة السابقة)

لدينا الشكل العقدي هو : $z'-\omega=(z-\omega)e^{i\theta}$ مع ω هو لحق مركز الدوران و θ هو قياس زاوية الدوران :

و منه:

$$z'-(2+5i) = (z-(2+5i))e^{i\frac{\pi}{2}}$$

$$z'=2+5i+(z-2-5i)i ; (e^{i\frac{\pi}{2}}=i)$$

$$z'=iz+2+5i-2i+5$$

Z' = 1Z + 2 + 51 - 21 + 5

z' = iz + 7 + 3i

z'=iz+7+3i r خلاصة: الكتابة العقدية للدوران

و منه:

$$r(A) = A' \Leftrightarrow a' = i(5+2i)+7+3i$$

 \Leftrightarrow a' = 8i + 5 = b

 $\mathbf{b} = \mathbf{5} + \mathbf{8}\mathbf{i}$ التي لحقها \mathbf{B} بالدوران \mathbf{R} هي النقطة \mathbf{B} التي لحقها

<u>. 04</u>

يحتوي صندوق: على 10 كرات أربع كرات حمراء و ست كرات خضراء (لا يمكن التميز بين الكرات باللمس). نسحب عشوانيا و في آن واحد كراتين من الصندوق

11. ليكن A الحدث: " الكرتان المسحوبتان حمراوان"

 $p(A) = \frac{2}{15}$: نبین أن

• عدد السحبات الممكنة: سحب كرتين في آن واحد من بين 10 كرات يمثل تأليفة ل 2 من بين 10 .

. card $\Omega = C_{10}^2 = \frac{10 \times 9}{1 \times 2} = 45$: و منه

• نحسب cardA

 $cardA = C_4^2 = \frac{4 \times 3}{1 \times 2} = 6$: و منه و 4 من بين 4 يمثل تأليفة ل 2 من بين 4 و منه و الكرتان المسحوبتان حمر او ان من بين 4 يمثل تأليفة ل

.
$$p(A) = \frac{\text{card}A}{\text{card}\Omega} = \frac{C_4^2}{C_{10}^2} = \frac{6}{45} = \frac{2}{15}$$
: ومنه

 $p(A) = \frac{2}{15}$ خلاصة:

122 منافق المتغير العشوائي الذي يربط كل سحبة بعدد الكرات الحمراء المتبقية في الصندوق بعد سحب الكرتين .

 $\{2,3,4\}$ في التي يأخذها المتغير العشوائي X هي $\{2,3,4\}$.

- \mathbf{x} عندما نسحب كرتين من اللون الأحمر يبقى في الصندوق كرتين من اللون الأحمر إذن القيمة ل \mathbf{x} هي 2.
- عندما نسحب كرّتين من اللون الأخضر يبقى في الصندوق أربع كرات من اللون الأحمر إذن القيمة ل old X هي 4.
- عندما نسحب كرة من اللون الأحمر و الأخرى من اللون الأخضر يبقى في الصندوق ثلاث كرات من اللون الأحمر إذن القيمة ل X هي 3 خلاصة : مجموعة القيم التى يأخذها المتغير العشوائى X هي $X(\Omega) = \{2,3,4\}$.

تصحيح الامتحان الوطني

.
$$p(X=3) = \frac{8}{15}$$
 : نبین أن

• الحدث (X=3) يمثل الحدث " سحب كرتين من لونين مختلفين "

 $\operatorname{card}(X=3) = C_4^1 \times C_6^1 = 24$ و منه : سحب کرة حمراء من بین 4 إذن 4 = $C_4^1 = 4$ و منه : سحب کرة حمراء من بین 4 إذن 5 = $C_4^1 = 4$

.
$$p(X=3) = \frac{C_4^1 \times C_6^1}{C_{10}^2} = \frac{24}{45} = \frac{8 \times 3}{15 \times 3} = \frac{8}{15}$$
 : و بالتالي:

$$p(X=3)=\frac{8}{15}$$
 خلاصة:

نحدد قانون احتمال المتغير العشوائي X نلخص ذلك بالجدول التالي:

سحب لكرتين	من اللون الأحمر	احدهما حمراء و الأخرى خضراء	من اللون الأخضر	
$\mathbf{X_{i}}$	2	3	4	المجموع
$p(X=x_i)$	$p(X=2) = \frac{C_4^2}{C_{10}^2} = \frac{6}{45} = \frac{2}{15}$	$p(X=3) = \frac{C_4^1 \times C_6^1}{C_{10}^2} = \frac{8}{15}$	$p(X=4) = \frac{C_6^2}{C_{10}^2} = \frac{15}{45} = \frac{1}{3}$	1

<u>. 05</u>

 $f\left(\mathbf{x}
ight) = 2\mathbf{x} - 2 + \mathrm{e}^{2\mathbf{x}} - 4\mathrm{e}^{\mathbf{x}}$ بما يلي : \mathbf{f} المعرفة على \mathbb{R} بما يلي :

. (1 cm الوحدة $(\mathcal{C}_{_f})$ منحنى الدالة f في معلم متعامد ممنظم ($(\mathcal{C}_{_f})$ منحنى الدالة القيام معلم متعامد ممنظم

... .01

. $\lim_{x \to -\infty} f(x) = -\infty$: نبین أن

 $\lim_{x \to \infty} f(x) = \lim_{x \to \infty} 2x - 2 + e^{2x} - 4e^x = -\infty$ ومنه $\lim_{x \to \infty} 2x - 2 = -\infty$ و $\lim_{x \to \infty} e^{2x} = \lim_{x \to \infty} e^x = 0$ لاينا:

. $\lim f(x) = -\infty$: خلاصة

 $-\infty$ بجوار (\mathcal{C}_f) بجوار $\mathbf{y}=2\mathbf{x}-2$ مقارب للمنحنى (\mathbf{D}) بجوار $\mathbf{y}=2\mathbf{x}$

ادينا : $\lim_{x \to 0} e^{2x} = \lim_{x \to 0} e^{x} = 0$ ومنه:

 $\lim_{x \to -\infty} f(x) - (2x - 2) = \lim_{x \to -\infty} 2x - 2 + e^{2x} - 4e^{x} - (2x - 2) = \lim_{x \to -\infty} e^{2x} - 4e^{x} = 0$

 $\lim_{x \to -\infty} f(x) - (2x-2) = 0$ و منه:

 $-\infty$ جوار (\mathcal{C}_f) خلاصة : المستقيم (\mathbf{D}) الذي معادلته $\mathbf{y}=2\mathbf{x}-2$ مقارب للمنحنى

....
$$\lim_{x \to +\infty} f(x) = +\infty :$$
 نبین أن
$$= \frac{1}{2}$$

لسنة 2015 - 2016

تصحيح الامتحان الوطني

لصفحة

$$\lim_{x \to +\infty} 2x - 2 = +\infty$$
 لاينا $\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} 2x - 2 + e^{2x} - 4e^{x} = \lim_{x \to +\infty} 2x - 2 + e^{x} \left(e^{x} - 4\right) = +\infty$ لاينا

$$\lim_{x \to +\infty} e^x \left(e^x - 4 \right) = +\infty \quad \text{im} \quad e^x = +\infty$$

$$\lim_{x\to\infty} f(x) = +\infty$$
 : خلاصة

$$\lim_{x \to +\infty} \frac{f(x)}{y} = +\infty : \lim_{x \to +\infty} \frac{f(x)}{y}$$

$$\lim_{x \to +\infty} \frac{f(x)}{x} = +\infty \quad \bullet$$

$$\lim_{x \to +\infty} \frac{f\left(x\right)}{x} = \lim_{x \to +\infty} \frac{2x - 2 + e^{2x} - 4e^x}{x} = \lim_{x \to +\infty} \frac{2x - 2}{x} + \frac{e^x}{x} \left(e^x - 4\right) = +\infty$$
 لاينا:

$$\lim_{x \to +\infty} e^x - 4 = +\infty \quad \lim_{x \to +\infty} \frac{e^x}{x} = +\infty \quad \lim_{x \to +\infty} \frac{2x - 2}{x} = 2$$

$$\lim_{x \to +\infty} \frac{f(x)}{x} = +\infty :$$
خلاصة

• نؤول النتيجة هندسيا:

، منحنى الدالمة \mathbf{f} يقبل فرع شلجمي في اتجاه محور الأراتيب بجوار $(\mathcal{C}_{_{\! f}})$

.03

.
$$\mathbb{R}$$
 نبین أن : $\mathbf{f}'(\mathbf{x}) = 2(\mathbf{e}^{\mathbf{x}} - 1)^2$ نبین أن : $\mathbf{f}'(\mathbf{x}) = \mathbf{f}'(\mathbf{x})$

لدينا : الدالة f قابلة للاشتقاق على $\mathbb R$ لأنها مجموع عدة دوال قابلة الاشتقاق على $\mathbb R$.

.
$$f'(x) = (2x - 2 + e^{2x} - 4e^x)' = 2 + 2e^{2x} - 4e^x = 2(1 + (e^x)^2 - 2e^x) = 2((e^x)^2 - 2e^x + 1) = 2(e^x - 1)^2$$
 الدينا:

x	∞	0		+∞
f'	+	0	+	
f	-8	0	7	+∞

 \mathbb{R} خلاصة : $\frac{2(e^{x}-1)^{2}}{1}$ لكل \mathbb{R} من \mathbb{R} . خلاصة : $\frac{2}{1}$ نضع جدول تغيرات f

 $f(\alpha)=0$ حيث أنه يوجد عدد حقيقي وحيد α من المجال α عدد حقيقي وحيد عدد حقيقي وحيد من المجال

نثبت أن: f تقابل من]1,ln4[إلى f (]1,ln4[)

الدالة f متصلة لأنها قابلة للاشتقاق (أو أيضا مجموع عدة دوال متصلة) على]1,ln4[

 $(f(]1,\ln 4[) =]e^2 - 4e;4\ln 2 - 2[$ الى $[1,\ln 4]$ الذن $[1,\ln 4]$ والذن $[1,\ln 4]$ الذن $[1,\ln 4]$

$$f(1) \times f(\ln 4) = (e^2 - 4e)(4\ln 2 - 2) = e(\underbrace{e - 4}_{<0})2 \times \underbrace{(2\ln 2 - 1)}_{>0} < 0 ; (2\ln 2 - 1 = \ln 4 - \ln e > 0 ; 4 > e)$$

13:01 2016-06-24

تصحيح الامتحان الوطني

لصفحة

- $0 \in f(]1, \ln 4[) =]e^2 4e; 4 \ln 2 2[$: ومنه
- إذن حسب مبرهنة القيم الوسيطية يوجد عدد وحيد lpha من المجال a a المجال a . (أو أيضا حسب الدالمة a تقابل)

 $f(\alpha) = 0$ حيث a من المجال a عدد وحيد a عدد وحيد عدد من المجال

...04

.] $-\infty$; $\ln 4$ [على المجال $\ln 4$; $+\infty$ [وتحت المستقيم $\ln 4$; $+\infty$ [على المجال $\ln 4$; $+\infty$ [على المجال $\ln 4$; $+\infty$ [المجال $\ln 4$; $+\infty$ [على المجال $\ln 4$] على المجال $\ln 4$ [على المجال $\ln 4$] على المجال $\ln 4$ [على المجال $\ln 4$] على المجال $\ln 4$ [على المجال $\ln 4$] على المجال $\ln 4$ [على المجال $\ln 4$] على المجال $\ln 4$ [على المجال $\ln 4$] على المجال $\ln 4$ [على المجال $\ln 4$] على المجال $\ln 4$ [على المجال $\ln 4$] على المجال $\ln 4$ [على المجال $\ln 4$] على المجال $\ln 4$ [على المجال الم

لدينا:

$$f(x)-(2x-2)=2x-2+e^{2x}-4e^{x}-2x+2=e^{x}(e^{x}-4)$$

 $e^x > 0$ لأن $e^x - 4$ اشارة الفرق هي إشارة الفرق

 $e^x - 4$ ندرس إشارة

ومنه:

$$e^{x} - 4 > 0 \Leftrightarrow e^{x} > 4$$

 $\Leftrightarrow \ln(e^{x}) > \ln 4$

 $\Leftrightarrow x > \ln 4$

وضع ($\mathcal{C}_{\!\scriptscriptstyle f}$) و المستقيم بواسط الجدول التالي :

x	–∞ l	n4 +∞	
f(x)-(2x-2)	_	0 +	
$\left(\mathbf{D} ight)$ الوضع النسبي ل $\left(\mathbf{C}_{\mathrm{f}} ight)$ و المستقيم	(D) تحت (C _f)	(D) فوق (C _f)	
(D) يقطع (C _r)			

(0.-5) وه إحداثيتيها هو ديدة زوج إحداثيتيها هو (\mathcal{C}_f) يقبل نقطة انعطاف وحيدة زوج

• نحسب الدالة المشتقة الثانية لتحديد نقط انعطاف . f

$$f''(x) = \left[2(e^x - 1)^2\right]^2 = 2 \times 2(e^x - 1)^2(e^x - 1) = 4e^x(e^x - 1) = 4e^x(e^x - 1) = 4e^x(e^x - 1)$$
 و منه و $f'(x) = 2(e^x - 1)^2$

• إشارة " f هي إشارة • • ومنه:

$$e^x - 1 \ge 0 \Leftrightarrow e^x \ge 1$$

$$\Leftrightarrow \ln(e^x) \ge \ln 1$$

$$\Leftrightarrow x \ge 0$$

إشارة "f بواسطة الجدول التالى:

X	-∞		0		+∞
f''(x)		_	0	+	

لسنة 2015 - 2016

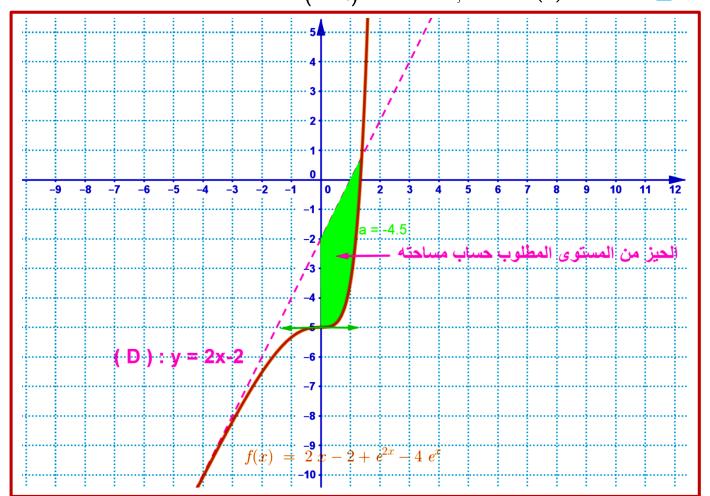
تصحيح الامتحان الوطنى

لصفحة

ومنه: الدالة المشتقة الثانية تنعدم في $x_0=0$ و تتغير إشارتها بحوار $x_0=0$ إذن النقطة التي أفصولها $x_0=0$ هي نقطة انعطاف و حيدة و لدينا $x_0=0=0$

(0.-5) فلاصة : المنحنى $(\mathcal{C}_{\!{}_{\!f}})$ يقبل نقطة انعطاف وحيدة زوج إحداثيتيها هو

 $(\alpha \approx 1,3)$ و المنحنى (\mathcal{C}_{f}) في نفس المعلم ($\mathcal{C}_{i}; \overline{i}; \overline{j}$) ننشئ المستقيم (\mathbf{D}) و المنحنى (\mathcal{C}_{f}) في نفس المعلم (\mathbf{D}) ننشئ المستقيم



...05

$$\int_0^{\ln 4} \left(e^{2x} - 4e^x \right) dx = -\frac{9}{2} :$$
نبين أن

ديا:

$$\int_0^{\ln 4} \left(e^{2x} - 4e^x \right) dx = \left[\frac{1}{2} e^{2x} - 4e^x \right]_0^{\ln 4} = \frac{1}{2} e^{2\ln 4} - 4e^{\ln 4} - \left(\frac{1}{2} e^{2x0} - 4e^0 \right) = \frac{1}{2} \times e^{\ln 16} - 4 \times 4 - \left(\frac{1}{2} \times 1 - 4 \times 1 \right) = -\frac{9}{2}$$

 $\int_0^{\ln 4} \left(e^{2x} - 4e^x \right) dx = -\frac{9}{2} :$ خلاصة

بي نحسب ب ${
m cm}^2$ مساحة حيز من المستوى المحصور بين المنحنى (\mathcal{C}_f) و المستقيم ${
m cm}^2$ و محور الأراتيب و المستقيم الذي ${
m x}={
m ln}\,4$

لسنة 2015 - 2016

تصحيح الامتحان الوطني

اصفحة

المساحة المطلوبة هي :

$$\int_{0}^{\ln 4} \left(\left(2x - 2 \right) - f\left(x \right) \right) dx = \int_{0}^{\ln 4} - \left(e^{2x} - 4e^{x} \right) dx = - \int_{0}^{\ln 4} \left(e^{2x} - 4e^{x} \right) dx = - \left(\frac{-9}{2} \right) = \frac{9}{2} cm^{2}$$

x = ln 4 و محور الأراتيب و المستقيم الذي معادلته (\mathcal{C}_{f}) و المستقيم (\mathcal{C}_{f}) و محور الأراتيب و المستقيم الذي معادلته

 $\frac{9}{2}$ cm² هي

....II

... .01

y'' - 3y' + 2y = 0: نحل المعادلة التفاضلية

 $r^2 - 3r + 2 = 0$ ومنه المعادلة المميزة هي : y'' + ay' + by = 0 في معادلة على شكل y'' + ay' + by = 0 نحل المعادلة المميزة :

لدينا:

$$\mathbf{r}^{2} - 3\mathbf{r} + 2 = 0 \Leftrightarrow \mathbf{r}^{2} - \mathbf{r} - 2\mathbf{r} + 2 = 0$$

$$\Leftrightarrow \mathbf{r}(\mathbf{r} - 1) - 2(\mathbf{r} - 1) = 0$$

$$\Leftrightarrow (\mathbf{r} - 1)(\mathbf{r} - 2) = 0$$

$$\Leftrightarrow \mathbf{r} = 1 \quad \mathbf{j}^{\dagger} \quad \mathbf{r} = 2$$

 ${f r}_{_2}=2$ و ${f r}_{_1}=1$ و منه المعادلة المميزة لها حلين حقيقين

. $\mathbb R$ مع lpha و بالتالي : الحل العام المعادلة التفاضلية هي الدوال التي على شكل : $y=lpha e^x+eta e^{2x}$ مع

. g'(0)=-2 و g(0)=-3 الذي يحقق الشرطين g'(0)=-2 و المعادلة و يحقق الشرطين

- . g'(0) = -2 و g(0) = -3 نحدد $g(x) = \alpha e^x + \beta e^{2x}$. لاینا
- $g'(0) = -2 \Leftrightarrow \alpha \times 1 + 2\beta \times 1 = -2$ ومنه $g'(x) = (\alpha e^x + \beta e^{2x})' = \alpha e^x + 2\beta e^{2x}$. لاينا
 - $g(0) = -3 \Leftrightarrow \alpha \times 1 + \beta \times 1 = -2$ 9 •
 - $\alpha=-4$ و منه : $\beta=1$ و منه : $\beta=1$ و منه : $\beta=1$ و منه : $\beta=1$

 $\mathbf{g}(\mathbf{x}) = \mathbf{e}^{2\mathrm{x}} - 4\mathbf{e}^{\mathrm{x}}$ في $\mathbf{g}'(\mathbf{0}) = -2$ الذي يحقق الشرطين $\mathbf{g} = -3$ و $\mathbf{g}(\mathbf{0}) = -3$ هي

. $h(x) = \ln(e^{2x} - 4e^x)$: بما يلي $\ln 4; +\infty$ الدالة العددية المعرفة على المعرفة المعرفة على المعرفة المعر

. $\mathbb R$ معرفة على h^{-1} نبين أن الدالة h تقبل دالة عكسية h^{-1} و أن h^{-1} معرفة على h نلاحظ أن : $h(x) - (2x-2) = e^{2x} - 4e^x = g(x)$ و $h(x) = \ln(g(x))$: نلاحظ أن

- اتصال h على]ln 4;+∞[•
- لدينا الدالة: $e^{2x} 4e^{x} = g$ متصلة (لأنها قابلة للاشتقاق مرتين و ذلك حل خاص للمعادلة التفاضلية من الدرجة 2) و موجبة وقطعا على $\ln 4; +\infty$ [ومنه وق المستقيم (D) على المجال $\ln 4; +\infty$ ومنه

$$(f(x)-(2x-2)=e^{2x}-4e^x=g(x)>0$$

ا الدالة: x → ln x على]0;+∞

لسنة 2015 - 2016

تصحيح الامتحان الوطني

لصفحة

- ا و منه : الدالة : $\ln(e^{2x}-4e^x)=\ln(e^{2x}-4e^x)$ متصلة على $\ln(x)=\ln(e^{2x}-4e^x)$ دالتين متصلتين .
 - الرتابة قطعا على]∞+;اس الرتابة قطعا
 - $]0;+\infty$ لدينا الدالة : $x\mapsto \ln x$ تزايدية قطعا على
- لدينا الدالة: $e^{2x} 4e^{x} = 2e^{x} \left(e^{x} 2\right)$ قابلة للاشتقاق على $\ln 4; +\infty$ مع دالتها المشتقة هي $\exp(e^{x} 2) + 2e^{2x} 4e^{x}$ إشارتها $\exp(e^{x} 2) + 2e^{2x} 4e^{x}$ قابلة للاشتقاق على $\exp(e^{x} 2) + 2e^{2x} 4e^{x}$ إذن الدالة $\exp(e^{x} 2) + 2e^{2x} 4e^{x}$ و منه $\exp(e^{x} 2) + 2e^{2x} 4e^{x}$ إذن الدالة $\exp(e^{x} 2) + 2e^{2x} 4e^{x}$ و منه $\exp(e^{x} 2) + 2e^{2x} 4e^{x}$ و منه $\exp(e^{x} 2) + 2e^{2x} 4e^{x}$ إذن الدالة $\exp(e^{x} 2) + 2e^{2x} 4e^{x}$ و منه $\exp(e^{x} 2) + 2e^{2x} 4e^$
 - الدالة h هي تزايدية قطعا على $-\infty$ الدالة h هي تزايديتين قطعا $-\infty$
 - $J=h\left(\ln 4;+\infty \right)$ من h^{-1} من h^{-1} الى الدالة h^{-1} من h^{-1} من h^{-1} الى الدالة عكسية h^{-1} من h^{-1} من h^{-1} الى الدالة عكسية h^{-1} من h^{-1} من h^{-1} الى الدالة h^{-1} من h^{-1} من

. $]\ln 4;+\infty$ [الى $J=hig(]\ln 4;+\infty$ الى J=h الى الم h^{-1}

J نحدد

لدينا:

$$(C_{f})$$
 ا $\lim_{x \to (\ln 4)^{+}} f(x) - (2x - 2) = 0^{+}$ ا $\lim_{x \to (\ln 4)^{+}} h(x) = \lim_{x \to (\ln 4)^{+}} \ln(f(x) - (2x - 2)) = -\infty$. ($\ln 4; +\infty$

 $\lim_{x \to +\infty} h(x) = \lim_{x \to +\infty} \ln(e^{2x} - 4e^{x}) = \lim_{x \to +\infty} \ln e^{x} (e^{x} - 4) = +\infty$

$$h(]\ln 4;+\infty[)=\left|\lim_{x\to(\ln 4)^+}h(x);\lim_{x\to+\infty}h(x)\right|=\mathbb{R}$$
 : ومنه

. $\mathbb R$ معرفة على $\mathbf h^{-1}$ معرفة على $\mathbb R$

 $(\ln 5)^{-1}$ نتحقق أن : $\ln 5 = \ln 5$ ثم نحدد $(\ln 5) = \ln 5$

$$h(\ln 5) = \ln(e^{2\ln 5} - 4e^{\ln 5}) = \ln(e^{\ln 25} - 4 \times 5) = \ln(25 - 20) = \ln 5$$

$h(\ln 5) = \ln 5$: خلاصة

• نحدد (h⁻¹) (ln 5)

لدينا ٠

- الأن ا $\ln 5$ فابلة للشتقاق على $\ln 4;+\infty$ (مركبة دالتين قابلتين للشتقاق) و منه $\ln 4;+\infty$ ($\ln 5$ \in $\ln 4;+\infty$)
 - نبین أن : 0 ≠ (ln5) (أي 'h لا تنعدم في 1 h (ln5)

$$h'(x) = \left(\ln\left(e^{2x} - 4e^{x}\right)\right)' = \frac{\left(e^{2x} - 4e^{x}\right)'}{e^{2x} - 4e^{x}} = \frac{2e^{2x} - 4e^{x}}{e^{2x} - 4e^{x}} = \frac{2e^{x}\left(e^{x} - 2\right)}{e^{x}\left(e^{x} - 4\right)} = \frac{2\left(e^{x} - 2\right)}{e^{x} - 4} : \text{ i.i.}$$

.
$$h'(\ln 5) \neq 0$$
 ومنه : $h'(\ln 5) = \frac{2(e^{\ln 5} - 2)}{e^{\ln 5} - 4} = \frac{2(5 - 2)}{5 - 4} = 6$

لسنة 2015 - 2016

تصحيح الامتحان الوطني

الصفحة

$${f x}_0 = {f ln}\, {f 5}$$
 انْخَذ : ${f h}^{-1}$ المع ${f h}^{-1}$ مع ${f h}^{-1}$ ${f h}^{-1}$ انْخَذ ${f h}^{-1}$ مع ${f h}^{-1}$ المنتقاق في ${f h}^{-1}$ المنتقاق في ${f h}^{-1}$ مع ${f h}^{-1}$ المنتقاق في ${f h}^{-1}$ المنتقاق في المنتقاق في ${f h}^{-1}$ المنتقاق في ${f h}^{-1}$ المنتقاق في المنتقا

$$(h^{-1})'(\ln 5) = \frac{1}{6}$$
 : خلاصة $(h^{-1})'(h(\ln 5)) = \frac{1}{h'(\ln 5)} = \frac{1}{6}$

انتهی