

الامتحان الوطني الموحد للبكالوريا ____المسالك الدولية — خيار أنجليزية

-عناصر الإجابة-

RR30E الدورة الاستدراكية 2018

المركز الوطني للتقويم والإمتحانات والتوجيه

المادة الفيزياء والكيمياء مدة الإنجاز شعبة العلوم الرياضية: " أ" و " ب" – خيار أنجليزية المعامل الشعبة أو المسلك

Chemistry (7 points)					
	Part I				
Question	Answers	Marking scale	Question reference in the framework		
1-1	Table of reaction progress	0,5	-Draw the progress table of a reaction and exploit it.		
1-2	Reach to $\frac{C_0}{2}$; $t_{1/2} = 4$ semaines	0,5+0,25	-Define the half-life $t_{1/2}$ of a chemical reaction. -Determine the half-life $t_{1/2}$ of the chemical reaction graphically or through exploiting the experimental results.		
1-3	The process ; $v \approx 2,1.10^{-2} \text{ mol.L}^{-1}.\text{semaine}^{-1}$	0,25 0,25	-Know the expression of the volume rate of reactionDetermine graphically the value of the volumetric rate of reaction		
1-4	$\theta_2 > \theta_1$	0,25	-Know the effect of reactant concentration and the temperature on the volumetric rate of reaction.		
2-1	The chemical equation the reaction.	0,5	-Write the equation of the acid-base reaction and identify the two pairs involved.		
2-2	$C=10^{-pH}\left(1+\frac{10^{-pH}}{K_A}\right);$ $C\approx 2.10^{-4} \text{ mol.L}^{-1}.$	0,5	-Write and use the expression of the acid dissociation constant $K_{\rm A}$ associated with the reaction of an acid with water.		
2-3	Reach to the expression	0,5			
2-4-1	The curve is associated to acid.	0,25	-Exploit the predominance and distribution diagrams of acidic and basic chemical species existing in		
2-4-2	HClO is the predominant specie ;justification	0,25 0,25	aqueous solution. -Determine the equilibrium constant associated to the equation of acid-base reaction using the acid dissociation constants of existing pairs. -Indicate the predominant chemical specie taking into		
2-5-1	The process ; $K=5.10^6$.	0,25+0,25	consideration pH of aqueous solution and pK_A of pair acid/base.		
2-5-2	$\frac{\left[\text{HClO}\right]_{\text{éq}}}{\left[\text{ClO}^{-}\right]_{\text{éq}}} = 1, \text{ conclusion.}$	0,25+0,25			

ä	الصفد	
eg		
a `		

RR30E

الامتحان الوطني الموحد للبكالوريا – الدورة الامتدراكية 2018 — عناصر الإجابة – ماحة: الغيزياء والكيمياء — هعبة العلوم العلوم الرياضية "أ" و"بم"— حيار أنجليزية

Part II				
1	$2Ag_{(aq)}^{+} + Fe_{(s)} \rightarrow 2Ag_{(s)} + Fe_{(aq)}^{2+}$.	0,5	-Write the half-equation that occurred in each electrode (use double arrows) and write the overall equation of the reaction during the battery functioning (use one arrow).	
2	Reach to the expression.	0,5	Establish the relationship between the amount of substance of chemical specie produced or	
3	$t_{d} \approx 1,29.10^{4} \text{ s} .$ $\left[Fe_{(aq)}^{2+} \right]_{f} = 0,3 \text{mol.} L^{-1} .$	0,25 0,25	consumed, the current intensity and the operating duration of a battery. Use this relationship to determine other quantities (quantity of charge, progress of the reaction, change of the mass).	

Physics (13 points)					
Ex1	Question	Answers	Marking scale	Question reference in the framework	
	1-1	Definition .	0,25	Define sinusoidal progressive wave, period, frequency and wavelength.	
	1-2	b	0,25	-Know (Recall) and use the relationship $\lambda = v.T$	
	1-3	The method; $v = 340 \text{m.s}^{-1}$.	0,25+0,25	- Exploit experimental documents and	
(2,25 points)	2	$\ell_2 = \frac{V_c}{2} (t_2 - t_1) ;$	0,25	data in order to determine:distance; time delay; wave speed. Define sinusoidal progressive wave, period, frequency and wavelength.	
oints)		$\ell_2 = 38,5 \text{mm}$.	0,25	-Know the boundaries of wavelengths and their colours for the visible spectrum in the vacuum.	
	3-1	Same wavelength.	0,25	Know (Recall) the characteristics of the diffracted wave.	
	3-2	$S = \frac{r \cdot \lambda}{a}$; $S \approx 13.1$ cm.	0,25+0,25	Know (Recall) and exploit the relationship $\theta = \lambda/a$; and know the units and the meaning of θ and λ .	

RR30E

الامتحان الوطني الموحد للبكالوريا – الدورة الامتدراكية 2018 — عناصر الإجابة – ماحة: الغيزياء والكيمياء — هعبة العلوم العلوم الرياضية "أ" و"بم"— حيار أنجليزية

I- 1-1 Differential equation. 0,2	-Know and exploit the voltage expression $u = r.i + L.\frac{di}{dt}$ between the inductor (coil) terminals using the receiver conventionFind out the differential equation and verify its solution when the RL dipole is submitted to a
	terminals using the receiver conventionFind out the differential equation and verify its
	-Find out the differential equation and verify its
	<u> </u>
	solution when the RL dipole is submitted to a
	1
1-2 F ((R+r),) 0.5	step voltage.
$i(t) = \frac{E}{R+r} \left(1 - e^{-\left(\frac{R+r}{L}\right)t} \right) $ 0,5	
$\left \frac{\mathbf{r}(t) - \mathbf{R} + \mathbf{r}}{\mathbf{R} + \mathbf{r}} \right ^{1 - \epsilon}$	when the RL dipole is submitted to a step
	voltage, and deduce the voltage expressions between the inductor terminals and the resistor
	terminals.
1-3-1 $R_1 = 8\Omega, r = 4\Omega$. 0,25+0	
	current intensity $i(t)$ in terms of time across
	the inductor and different physical quantities
	associated to it, and exploit them.
1-3-2 The process 0,5	
lec	expression.
算: 2-1 The process 0,2	
ity	magnetic energy stored in a inductor. Know and exploit the expression of the electric
(5,	energy stored in a capacitor.
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	expression.
	- Know and exploit the energetic diagrams.
II-1- $N_p = 2.10^5 \text{ Hz}$ 0,2	
	to transform the modulated amplitude voltage
2 b 0,5	to affine function of the modulating voltage.
	- know the required conditions to avoid over modulation.
The conditions are 0,25+0	0,25 Recognise the stages of the amplitude
verified; justification	modulation.
4 $u_s(t) = 3.\cos(4.10^5 \pi t) + 0.20$	-Know the conditions allowing to get an amplitude modulation and a high quality
$0,6.\cos(4,08.10^5\mathrm{mt})+$	detection envelope.
$0,6.\cos(3,92.10^5 \pi t).$	-Know and exploit the frequency spectrum.
	-Know the selective role of the LC (bung
+spectrum +spectrum	circuit) for the modulated voltage.
5 Can't detect the studied 0,25+0	0,25
wave, justification	

- 2	الصفحا	
_	<u></u>	
`	, →	
4		

RR30E

الامتحان الوطني الموحد للبكالوريا – الدورة الاستحراكية 2018 – عناصر الإجابة – ماحة: الغيزياء والكيمياء — هعبة العلوم العلوم الرياضية "أ" و"بد"— حيار أجبليزية

Exer	cice	Question	Answers	Marking	Question reference in the
3		Question	7 ms wers	scale	framework
		1-1	Reach to the differential equation	0,5	Know the selective role of the LC (bung circuit) for the modulated voltage. Apply Newton's second law to
		1-2-1	$a_G = 0.5 \text{m.s}^{-2}$.	0,25	determine the kinetic quantities $\overrightarrow{v_G}$ and $$
		1-2-2	$F \approx 4,25.10^2 \text{ N}$	0,25	a_G and dynamic quantities and exploit them
		1-3	, f	0,25	Exploit the velocity-time graph:
			$k = \frac{1}{\text{mg}\cos\alpha - F\sin(\beta - \alpha)};$	0,25	$v_G = f(t)$. - Apply Newton's second law to find out
			k≈0,28.		the differential equation of a system's centre of inertia motion in horizontal or
	Part I				inclined plane and determine the
	I				characteristics of kinetic and dynamic quantities of motion.
		2-1	x(t)=9,2t,	0,25	- Apply Newton's second law in the
			$y(t) = -4.9.t^2 + 3.9.t$	0,25	case of a projectile to: * find out differential equation of
>				0,23	motion;
1ech		2-2	Deduction of the equation of	0,5	* deduce the parametric equations of
ıan		2-3	the path.	0.25	motion and exploit them; * establish the equation of the path
ics (2-3	Process, SB≈34,6m.	0,25	(trajectory), find out the expressions
Mechanics (5,5 points)				0,25	of the range and the maximum height of the path and exploit them;
		1-1	Reach to $E_{pp} = \frac{\text{m.g.}\ell}{2}.\theta^2$	0,5	 -Exploit the energy diagrams. -Exploit the expression of the gravitational potential energy and the
		1-2	$E_{\rm m} \approx 4, 7.10^{-4} J$.	0,25	expression of the kinetic energy to determine the mechanical energy of
		1-3	Process;	0,25	the physical pendulum in the small
	Pa		$\frac{\theta}{\theta} + \frac{g}{\ell}\theta = 0.$	0,25	oscillations case. - Exploit the conservation of the mechanical energy of a physical pendulum in the small oscillations
	Part II	2-1	$T_0 = 2\pi \sqrt{\frac{\ell}{\pi}}$;	0,25	caseKnow the expression of the natural
			√g	0,25	period for the simple pendulum.
			Verification.		
		2-2	$T_0 \approx 1s$,	0,25	
			n=20.	0,25	
		3	Reach to the expression	0,25	