الصفحة 1

الامتحان الوطني الموحد للبكالوريا

⊕\$OPANK-0+ C\$Job 13808 | +60cUo-Jo+ Ions*** X++\$Jos Coo-Jo 8***O8 ∧ Onnkolo ∧⊒Noo8 ∧

الدورة الاستدراكية 2017

-الموضوع -

RS 45

المركز الوطني للتقويم والامتحانات والتوجية

4	مدة الإنجاز	علوم المهندس	المادة
8	المعامل	شعبة العلوم والتكنولوجيات مسلك العلوم والتكنولوجيات الميكانيكية	الشعبة أو المسلك

Constitution de l'épreuve

Volet 1 : présentation de l'épreuve et grille de notation : page 1/17 Volet 2 : présentation du support : page 2/17

Volet 3 : substrat du sujet : pages de 3/17 à 11/17

○ Situation d'évaluation 1 (SEV 1)
 ○ Situation d'évaluation 2 (SEV 2)
 ○ Situation d'évaluation 3 (SEV 3)
 : page 3/17
 : page 3/17

o documents réponses (DREP) : pages de 4/17 à 11/17 (à rendre par le candidat)

Volet 4 : documents ressources (DRES) : pages de 12/17 à 17/17

Volet 1 : Présentation de l'épreuve

• Système à étudier : Élévateur de palettes :

• Durée de l'épreuve : 4 heures ;

• Coefficient : 8;

• Moyen de calcul autorisé : Calculatrice non programmable ;

• Documents autorisés : aucun ;

• Les candidats rédigeront leurs réponses sur les documents réponses (DREP) prévus à cet effet.

GRILLE DE NOTATION								
SITUATION I	D'EVALUATION 1	SITUATION D'EVALUATION 2		SITUATION D'EVALUATION 3				
TA	СНЕ 1.1	TACHE 2.1		TACHE 3.1				
a	1.5pt	a 1pt		a	3.5pts			
b	4pts	b	1pt	b	3pts			
TA	CHE 1.2	c	1pt	С	4pts			
a	1pt	d	1pt	TACI	HE 3.2			
b	2pts	e	1pt	a = a1 + a2 + a3	3.5 + 2 + 2 = 7.5pts			
c	1pt	f	1pt	b	2pts			
d	1pt	g	1pt	TACHE 3.3				
e	4pts	h	1pt	$\mathbf{a} = \mathbf{a}1 + \mathbf{a}2$	2+2=4pts			
TA	СНЕ 1.3	i	1pt	b	1pt			
$\mathbf{a} = \mathbf{a}1 + \mathbf{a}2$	1,5 + 1 = 2,5pts	TACH	IE 2.2	С	1pt			
b	0,5pt	a	1pt	TACI	₹ 3.4			
c	1pt	b	1.5pt	a	1.5pt			
d	1pt	c	1pt	b	1.5pt			
		TACH	IE 2.3	С	1.5pt			
		a	1pt	d	1pt			
		b	1pt	TACI	HE 3.5			
		c	1pt	a	1.25pt			
		d	1pt	b	3.75pts			
		TACHE 2.4		С	4,5pts			
		a	1pt					
		b	1pt]				
		c	1pt					
Total SEV	V1 = 19.5 pts	Total SEV2 = 1	otal SEV2 = 19.5 pts Total SEV3 = 41 p					
	TOTAL · /80 Points							

TOTAL:/80 Points

- مادة علوم المهندس - شعبة العلوم والتكنولوجيات مسلك العلوم والتكنولوجيات الميكانيكية

Volet 2 : Présentation du support

1. Mise en situation:

(1) Élévateur de palettes

3 Chariot élévateur4 Convoyeur à rouleaux

2 Transpalette

Afin d'optimiser les surfaces de production ou de stockage et pour pallier à l'importance des flux dans les centrales de distribution, dans les plates-formes logistiques ou sur les sites de production, des installations à différents niveaux de hauteur sont utilisées (**figure 1** ci-dessous). La montée et la descente des palettes (pile de palettes ou d'une palette chargée) est donc souvent nécessaire pour la circulation de ces dernières entre les différents niveaux de production et de stockage. L'excellente solution pour répondre à ce besoin est, entre autres, l'élévateur de palettes, objet de l'étude de la présente épreuve.

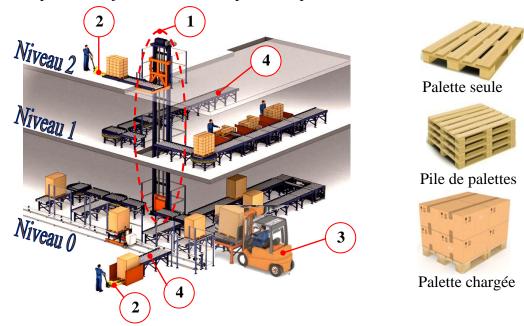


Figure.1 : Exemple d'un site de production ou d'une plate-forme logistique en trois niveaux

Afin d'améliorer les performances de l'élévateur de palettes produit et commercialisé par une société, son bureau d'étude a décidé de revoir sa conception pour répondre aux exigences décrites par la suite.

2. Description et caractéristiques essentielles de l'élévateur de palettes :

L'élévateur de palettes permet à son utilisateur de monter et descendre en toute sécurité des palettes entre deux ou plusieurs niveaux définis suivant un axe vertical. Il doit répondre, entre autres, aux exigences suivantes :

- ✓ La capacité de charge maximale : 750 kg;
- ✓ La vitesse linéaire en charge : $V_{Lc} = 0.5 \text{ m/s}$;
- ✓ La course verticale : jusqu'à 7 m;
- ✓ Le type de la commande : mode automatique et manuel par boitier fixe.

3. Principe de fonctionnement de l'élévateur de palettes : (voir figure 1 ci-dessus et DRES pages 12/17 à 14/17)

L'emplacement d'une pile de palettes ou d'une palette chargée sur le coulisseau de l'élévateur de palettes est effectué soit par un chariot élévateur ou un transpalette ou un convoyeur à rouleaux. La puissance nécessaire à la montée et la descente du coulisseau est fournie par un moteur-frein asynchrone. Elle est transmise au coulisseau grâce à un organe E, un réducteur à engrenage à denture hélicoïdale, un limiteur de couple (qui protège contre les surcouples) et un système pignon-chaîne simple.

Le guidage en translation verticale du coulisseau est assuré par des rails et des galets. La détection des limites de ce mouvement est assurée par des capteurs de fin de courses **ILS** (Interrupteur à Lame Souple).

Une fois arrivée au niveau de hauteur voulu, la pile de palettes ou la palette chargée est évacuée par un convoyeur pour la suite de sa circulation entre les différents niveaux de production ou pour son stockage.

Votre étude consiste à :

- ✓ choisir ou valider certaines solutions constructives proposées afin d'assurer les différentes fonctions techniques de l'élévateur de palettes ;
- ✓ étudier la commande de sa montée et de sa descente ;
- ✓ étudier partiellement la production de l'une de ses pièces.

- مادة علوم المهندس - شعبة العلوم والتكنولوجيات مسلك العلوم والتكنولوجيات الميكانيكية

Volet 3 : Substrat du sujet

SEV	Étude fonctionnelle et analyse technique de l'élévateur de palettes et étude de			
01	l'automatisme de commande de son moteur électrique.	points		

Tâche 1.1: Expression du besoin de l'élévateur de palettes et traduction de sa fonction principale en fonctions techniques et en solutions technologiques. /5,5pts

En se référant à la page 2/17 et aux DRES pages 12/17, 13/17 et 14/17, répondre aux questions du DREP page 4/17.

Tâche 1.2 : Analyse technique de quelques unes des pièces de l'élévateur de palettes et de leurs liaisons mécaniques.

// Ppts

En utilisant les DRES pages 12/17, 13/17 et 14/17, répondre aux questions des DREP pages 4/17 et 5/17.

Tâche 1.3 : Étude partielle de l'automatisme de commande du moteur électrique qui agit sur la montée et la descente verticales du coulisseau de l'élévateur de palettes. /5pts

Á ce propos, répondre aux questions du DREP page 6/17.

SEV	Étude cinématique, dynamique, énergétique, de résistance pour choisir et valider quelques	19,5
02	éléments constituant la chaîne de transmission de la puissance dans l'élévateur de palettes	points

Tâche 2.1 : Étude cinématique, dynamique et énergétique de la transmission de puissance dans l'élévateur de palettes pour le choix du moteur-frein convenable.

En utilisant les données des DRES pages 14/17 et 15/17, répondre aux questions du DREP page 7/17.

Tâche 2.2: Choix et calcul des paramètres de la chaîne simple capable de transmettre la puissance nécessaire pour la montée et la descente du coulisseau de l'élévateur de palettes. /3,5pts

En se référant aux DRES pages 15/17 et 16/17, répondre aux questions des DREP pages 7/17 et 8/17.

Tâche 2.3 : Validation de la clavette (51) choisie pour assurer la transmission de la puissance entre l'arbre de sortie du réducteur (60) et le moyeu du limiteur de couple (48).

/4pts

Pour cela et en utilisant les données du DRES page 16/17, répondre aux questions du DREP page 8/17.

Tâche 2.4 : Représentation graphique de la liaison complète indirecte démontable entre la chaîne simple et le coulisseau.

/3pts

Pour ce faire, répondre aux questions du **DREP page 8/17**.

SEV Étude de production du support (67) de l'élévateur de palettes	41 points
--	-----------

Tâche 3.1 : Analyse du dessin de définition du support (67) et établissement de son dessin de brut.

Pour cela, répondre aux questions du **DREP page 9/17**.

/10,5pts

Tâche 3.2 : Étude partielle de la phase 20 (DRES page 17/17) relative à la réalisation du support (67) (DRES page 16/17) en série répétitive de 300 pièces. /9,5pts

Á ce propos, répondre aux questions du **DREP** page 9/17.

Tâche 3.3 : Étude de la phase 40 : réalisation des alésages D1 et D2 (ébauche et 1/2finition). /6pts

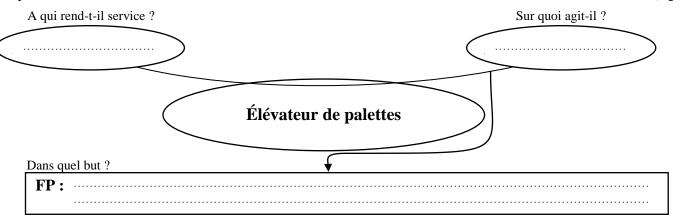
En se référant aux DRES pages 16/17 et 17/17, répondre aux questions du DREP page 10/17.

Tâche 3.4 : Choix, en tenant compte des conditions de coupe DRES page 17/17, de la machine capable de réaliser l'opération d'ébauche des deux alésages ($D_{1\acute{\rm E}b}$ et $D_{2\acute{\rm E}b}$). /5,5pts

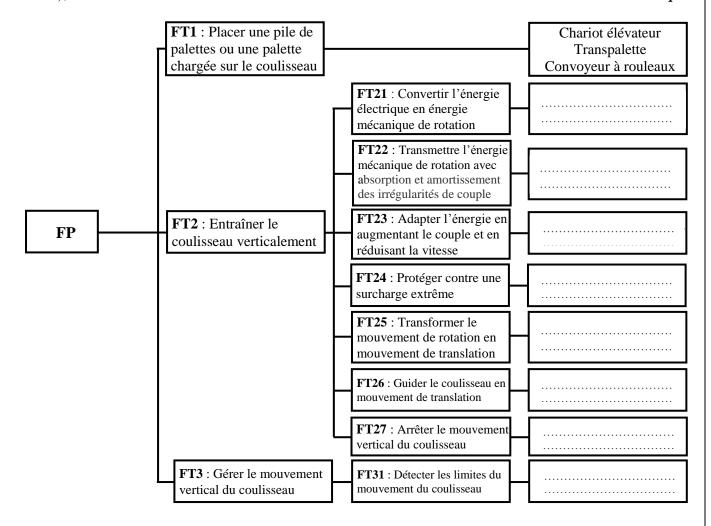
Pour ce faire, répondre aux questions du DREP page 10/17.

Tâche 3.5 : On se limite dans cette tâche à établir le programme CN pour réaliser la première passe de 4 mm du profil de la surface R₁, (DRES page 16/17), sur une fraiseuse à commande numérique. /9,5pts Pour cela, répondre aux questions du DREP page 11/17.

الصفحة	20.45
4	RS 45


- مادة علوم المهندس - شعبة العلوم والتكنولوجيات مسلك العلوم والتكنولوجيات الميكانيكية

Documents réponses


SEV 01:

Tâche 1.1 : Étude fonctionnelle de l'élévateur de palettes.

a- Compléter, en se basant sur la présentation du support (**page 2/17**), le diagramme « bête à cornes » du système étudié : /1,5pt

b- Compléter, par les solutions technologiques proposées (page 2/17 et DRES pages 12/17, 13/17 et 14/17), le FAST suivant : /4pts

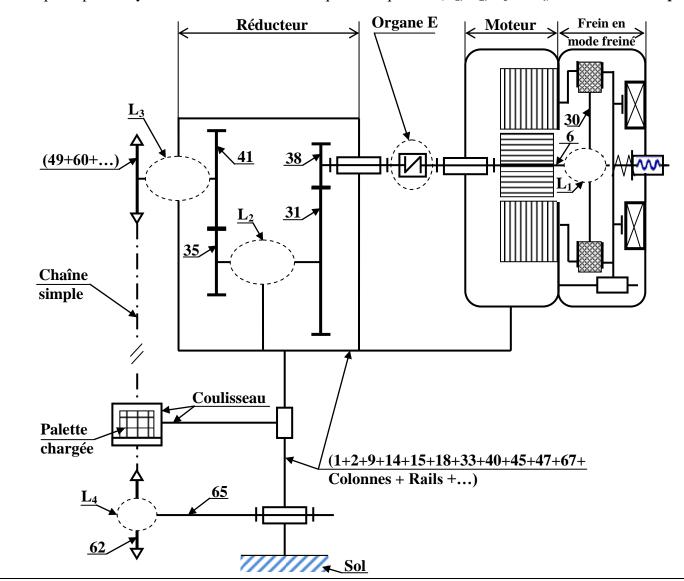
Tâche 1.2: Analyse technique de l'élévateur de palettes.

a- Donner, en analysant les données des **DRES pages 13/17** et **14/17**, le nom complet du frein utilisé dans l'élévateur de palettes en indiquant le type de frein et le type de sa commande : // Ipt

- مادة علوم المهندس - شعبة العلوم والتكنولوجيات مسلك العلوم والتكنولوجيات الميكانيكية

b- Compléter le tableau de fonctionnement du frein, en se référant aux DRES pages 13/17 et 14/17 et en utilisant les termes (donnés en désordre) de la liste suivante : Non – En contact - Comprimé - Attiré - Séparées - Oui - Poussé - Non comprimé.

	Plateau mobile (20)	Ressort (25)	(18), (19+30) et (20)	Freinage
Bobine non alimentée				
Bobine alimentée				

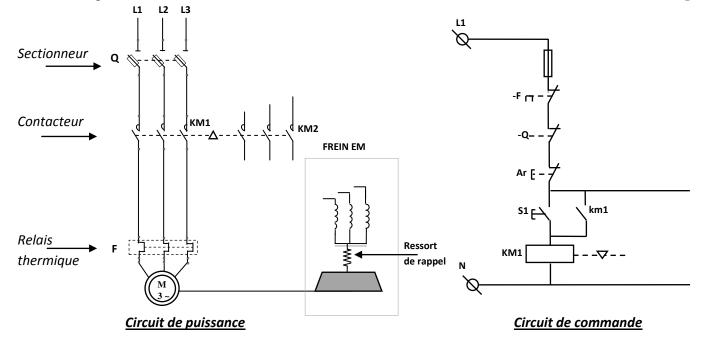

c- Citer deux avantages des engrenages à denture hélicoïdale utilisés dans le réducteur : //lpt

d- Relier, par une flèche, l'organe ou l'ensemble au nom technologique qui lui correspond : // Ipt

L'organe ou l'ensemble
E
(48+50+52+55+56+57+58+59)

Le nom technologique qui lui correspond					
Embrayage à disques					
Accouplement rigide					
Accouplement élastique					
Limiteur de couple à ressort de compression					
Limiteur de couple à rondelles élastiques « <i>Belleville</i> »					
Roue libre à rouleau					

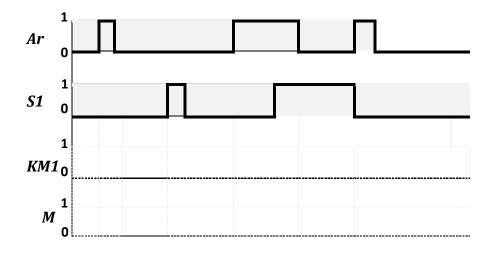
e- Compléter, en se référant aux **DRES pages 12/17, 13/17** et **14/17**, le schéma cinématique minimal simplifié par les symboles des liaisons mécaniques manquantes (**L**₁, **L**₂, **L**₃ et **L**₄): /4pts



- مادة علوم المهندس - شعبة العلوم والتكنولوجيات مسلك العلوم والتكنولوجيات الميكانيكية

Tâche 1.3:

- **a-** La montée et la descente du coulisseau de l'élévateur à palettes sont assurées par un moteur-frein asynchrone triphasé **M** à deux sens de rotation commandé par deux contacteurs **KM1** (pour la montée) et **KM2** (pour la descente). Compléter sur le schéma ci-dessous :
 - **a-1-** le câblage du circuit de puissance du moteur-frein M à deux sens de rotation : /1,5pt
 - a-2-le câblage du circuit de commande du contacteur KM2 assurant la descente du coulisseau. : //pt



b- Déduire l'équation logique de **KM1** : /0,5pt

c- Compléter le tableau ci-dessous, montrant le fonctionnement du moteur-frein **M** dans un seul sens, dans le cas où les contacts du sectionneur **Q** sont fermés et **M** est alimenté par le contacteur **KM1** : //pt

Entrées		km1	Conting non (1 ou 0)				
S1	Ar	KIIII	Sorties par (1 ou 0)				
0	0	km1=	KM1=	M=			
0	1	km1=	KM1=	M=			
1	0	km1=	KM1=	M=			
1	1	km1=	KM1=	M=			

d- Compléter le chronogramme du contacteur KM1 et du moteur-frein M selon les états de Ar et de s1: /lpt

الصفحة	50.45
7	RS 45

- مادة علوم المهندس - شعبة العلوم والتكنولوجيات مسلك العلوم والتكنولوجيات الميكانيكية

SEV 02:

Tâche	21.	(Prondro	dour chif	fres après	la virou	lo dans t	ous les c	alculs de	cotto	tâche)
1 acne	4.1 :	(Frenare	ueux cnii	ires abres	ia virgu	ie aans i	ous ies c	aicuis ae	e ceue	iucne)

a-	Déterminer la fréquence de rotation N_{pc} (en tr/min), que doit avoir le pignon moteur à chaîne (49) de diamètre primitif $D_p=192,02$ mm, pour que la chaîne simple assure un déplacement vertical de la charge totale à une vitesse $V_{LC}=0,5$ m/s:
b-	Déduire, en considérant qu'il n'y a pas de glissement entre les surfaces actives du limiteur de couple, la vitesse de rotation N_{lc} (en tr/min) du limiteur de couple et la vitesse de rotation N_{r} (en tr/min) de l'arbre de sortie du réducteur (60) :
c-	Calculer, en utilisant la page 5/17 et les DRES pages 13/17 et 14/17, le rapport de réduction r du réducteur : //pt
d-	Déterminer, en prenant pour la suite du calcul la vitesse de rotation $N_r = 50$ tr/min et $r = 0,05$, la vitesse de rotation N_E (en tr/min) de l'organe E et déduire celle du moteur N_m (en tr/min) : // Ipt
e-	Déterminer, en utilisant les hypothèses et la modélisation des DRES pages 14/17 et 15/17 et en appliquant le principe fondamental de la dynamique en translation en projection sur l'axe \vec{Z} à l'ensemble (coulisseau + palette chargée), l'intensité de l'effort utile F_u (en N) à la chaîne pour déplacer de bas vers le haut la charge totale M_{CT} à l'accélération limite en charge $\gamma_C = 0.5$ m/s ² : // Ipt
f-	Déduire, en négligeant le frottement dans la liaison glissière assurant le guidage en translation du coulisseau par rapport au bâti, la puissance utile P_u (en kW) développée par l'effort F_u utile à la chaîne simple pour déplacer de bas vers le haut la charge totale à la vitesse V_{LC} = 0,5 m/s : //pt
g-	Calculer, selon l'agencement de la chaîne de transmission de puissance dans l'élévateur de palettes $DRES$ page 14/17, le rendement global de la transmission η_g : /Ipt
 h-	Déduire, en prenant pour la suite du calcul P_u = 4,20 kW et η_g = 0,77, la puissance mécanique P_m (en kW) à fournir par le moteur-frein :
i-	Choisir, à partir du DRES page 15/17, la désignation du moteur électrique convenable optimal : //lpt
par	he 2.2 : En utilisant les données relatives à cette tâche DRES pages 15/17 et 16/17, déterminer quelques amètres de la chaîne simple. Pour ce faire, on vous demande de : Proposer, en suivant l'exemple donné sur l'abaque de sélection, le pas de la chaîne simple à choisir pour transmettre la puissance de sélection à la fréquence de rotation du pignon moteur : // Ipt

الصفحة	D 0.4
<u>8</u>	RS 4
17 \	

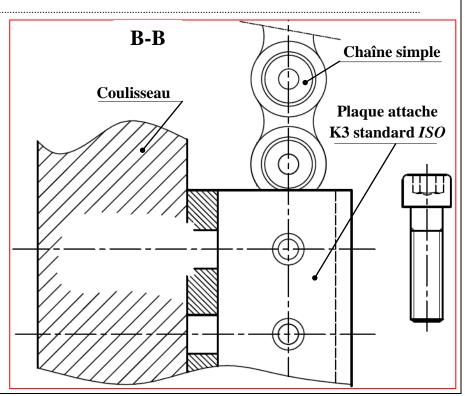
- مادة علوم المهندس - شعبة العلوم والتكنولوجيات مسلك العلوم والتكنولوجيات الميكانيكية

Le mode de fonctionnement des chaînes (fatigue) fait que pour choisir convenablement une chaîne il suffit de comparer sa charge de rupture \mathbf{R} , indiquée dans les catalogues constructeurs, à l'effort de tension maximal \mathbf{F}_{max} , pondéré par un coefficient de sécurité $\mathbf{K} = \mathbf{R}/\mathbf{F}_{max}$, tel que \mathbf{K} doit-être compris entre $\mathbf{5}$ et $\mathbf{20}$.

b- Relever, à partir de l'extrait du catalogue constructeur, les références de la chaîne (N° ISO et Réf. Brampton), la valeur de sa résistance à la rupture $\bf R$ et conclure sur sa validité si $\bf F_{max} = 9000~\bf N$: /1,5pt

Brainproof, in various de sa resistance a la rupture \mathbf{K} et conclure sur sa varione si $\mathbf{F}_{\text{max}} = 9000 \mathbf{N}$. $71,5p$
Références de la chaîne :
Conclusion
c- Déterminer, en utilisant les données du DRES page 15/17, la longueur de la chaîne L _m (en maillons) e nombre pair, juste nécessaire pour assurer la course exigée par le cahier de charges : /1p
Tâche 2.3 : Étant données les conditions de fonctionnement (démarrages fréquents et variations d'effort e
fonctionnement), il est utile de vérifier la clavette (51), participant à la liaison complète démontable entre l moyeu du limiteur de couple (48) et l'arbre de sortie du réducteur (60), au cisaillement (entre autres). E

utilisant les données du **DRES page 16/17**, on vous demande de : **a-** Calculer l'intensité de l'effort tangentiel $\|\vec{T}\|$ (en **N**) résultant sur la clavette lors de la transmission du couple C_r entre le moyeu du limiteur de couple (48) et l'arbre de sortie du réducteur (60) : //lpt


b- Calculer la section **S** sollicitée au cisaillement (en **mm**²), de la clavette : //Ip

c- Déterminer, en prenant $\|\vec{T}\|$ =34800 N et S=304 mm², la contrainte de cisaillement τ (en N/mm²) : /1pt

d- Conclure sur la condition de résistance de la clavette au cisaillement : // Ipt

Tâche 2.4 : Compléter, à l'échelle de représentation des pièces, la coupe partielle B-B (DRES page 12/17) montrant la liaison complète démontable entre la chaîne simple et le coulisseau par l'intermédiaire d'une plaque attache K3 standard *ISO* et des vis de fixation à tête cylindrique à six pans creux. Pour cela :

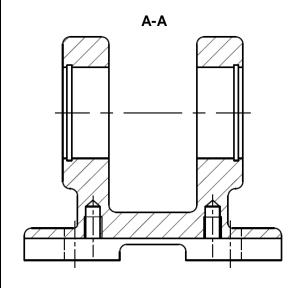
- **a-** Dessiner une des six vis pour assurer cette liaison complète démontable; //1pt
- **b-** Compléter les parties manquantes du perçage et du taraudage ; /*1pt*
- **c-** Compléter les hachures manquantes. /1pt

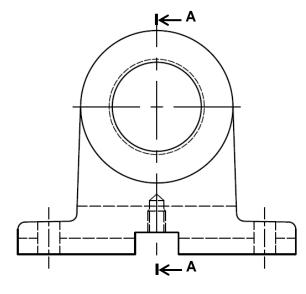
حة	الصف
$\overline{}$	9
47	<u> </u>

الامتحان الوطنى الموحد للبكالوريا - الدورة الاستدراكية 2017 - الموضوع

- مادة علوم المهندس - شعبة العلوم والتكنولوجيات مسلك العلوم والتكنولوجيات الميكانيكية

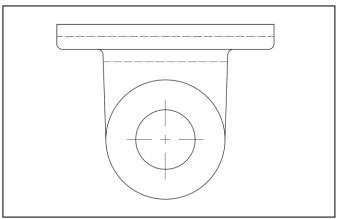
SEV 03:


Tâche 3.1:


a- Identifier et expliquer la désignation du matériau du support (67) DRES page 16/17 : /3,5pts

0,1/100 **b-** Compléter le tableau ci-dessous relatif à la spécification suivante : /3pts

Nom de la spécification	Type de spécification	Interprétation


c- Compléter le dessin du brut capable du support (67) en indiquant les surépaisseurs d'usinage, le plan de joint et les dépouilles, sachant que l'avant trou de D_1 et D_2 provient brut du moulage : /4pts

Tâche 3.2:

- a- Indiquer sur le croquis de phase, ci-contre, relatif à la phase 20 du support (67) DRES page 16/17:
 - a-1-La mise et le maintien en position de la pièce en utilisant les symboles de la deuxième norme; /3.5pts
 - a-2-Les cotes fabriquées dans cette phase et leurs
 - a-3-Les spécifications géométriques obtenues dans cette phase. /2pts

b- Mettre une croix dans les cases correctes relatives à l'opération d'usinage de \mathbf{F}_1 :

/2pts

Désignation de l'opération		L'outil utilisé		La machine utilisée		Le vérificateur de la cote $10^{\pm0,2}$	
Rainurage		Fraise à lamer		Fraiseuse		Règle graduée	
Épaulement Fraise à surfacer A		Aléseuse		Tampon lisse			
Surfaçage		Fraise à deux lèvres		Rectifieuse		Pied à coulisse 1/20	

فحة	الص
$\overline{}$	10
<u>17</u> `	

الامتحان الوطني الموحد للبكالوريا – الدورة الاستدراكية 2017 – الموضوع – مادة علوم المهندس – شعبة العلوم والتكنولوجيات مسلك العلوم والتكنوليكية

Tâche 3.3:

Étude partielle de la phase 40 : réalisation en ébauche des alésages D1 et D2 sur un tour parallèle.

- **a-** Étudier l'outil d'alésage réalisant les opérations d'ébauche et demi finition des alésages **D1** et **D2**. Pour ce faire, sur le croquis ci-dessous :
 - a-1- Installer les plans du référentiel en main (Pr, Ps, Pf, Po);

/2pts

a-2- Indiquer les angles de faces orthogonaux $(\alpha_0, \beta_0, \gamma_0)$ et l'angle de direction d'arête K_r .

/2pts

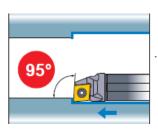


Figure montrant la barre d'alésage en mode de travail

b- Déduire la valeur de $\mathbf{K_r}$:

/1pt

c- Mettre une croix dans la case de la réponse correcte caractérisant l'influence de l'usure de l'outil sur les dimensions des diamètres de D1 et D2 : //pt

Les dimensions	vont	auamontor
Les aimensions	voni	augmenier

Les dimensions vont diminuer

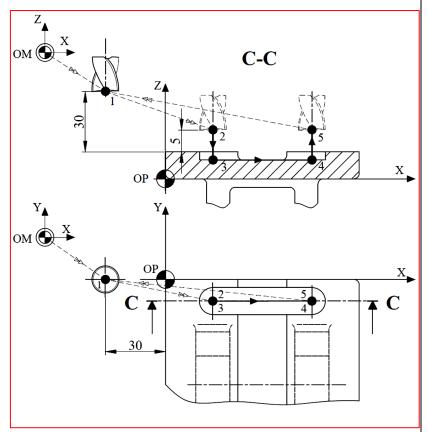
Tâche 3.4:

a- Calculer l'intensité de *la composante tangentielle de l'effort de coupe* **Fc** (en **N**) résultant de l'effort de coupe exercé par la pièce sur l'outil : /1,5pt

b- Déterminer, en prenant $\mathbf{Fc} = \mathbf{850} \, \mathbf{N}$, la puissance \mathbf{Pu} (en \mathbf{kW}) utile à la coupe : /1,5pt

c- Déduire la puissance minimale à fournir par le moteur de la machine Pm (en kW): /1,5pt

d- Choisir, à partir du tableau **DRES page 17/17**, la référence de la machine adéquate : // Ipt

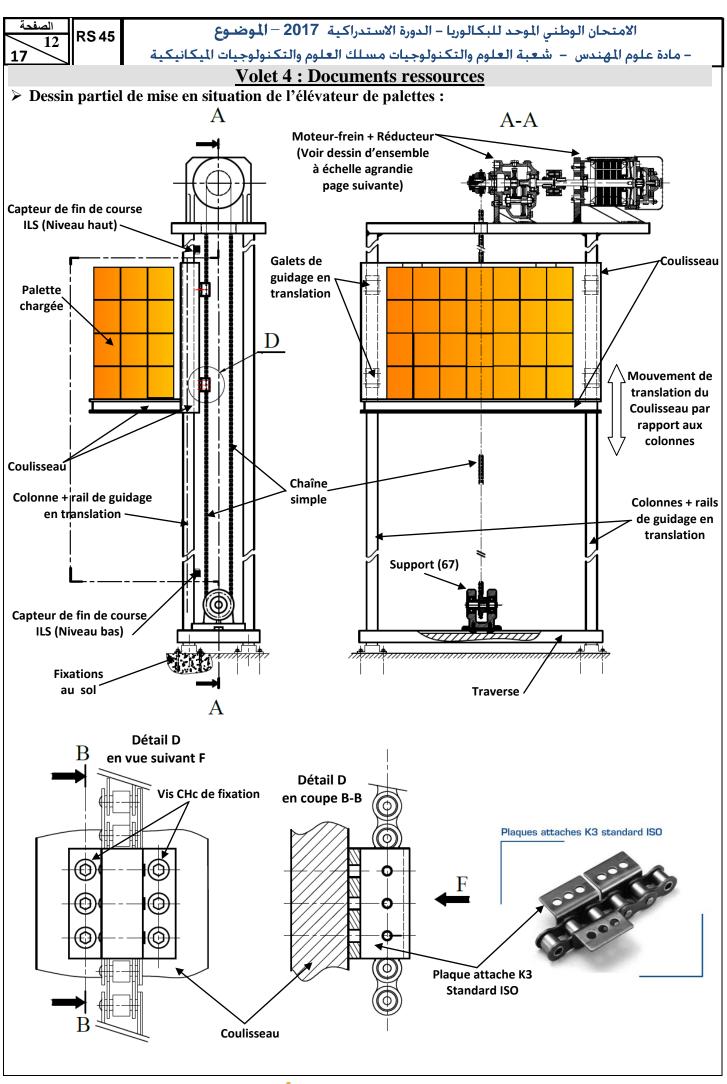

- مادة علوم المهندس - شعبة العلوم والتكنولوجيات مسلك العلوم والتكنولوجيات الميكانيكية

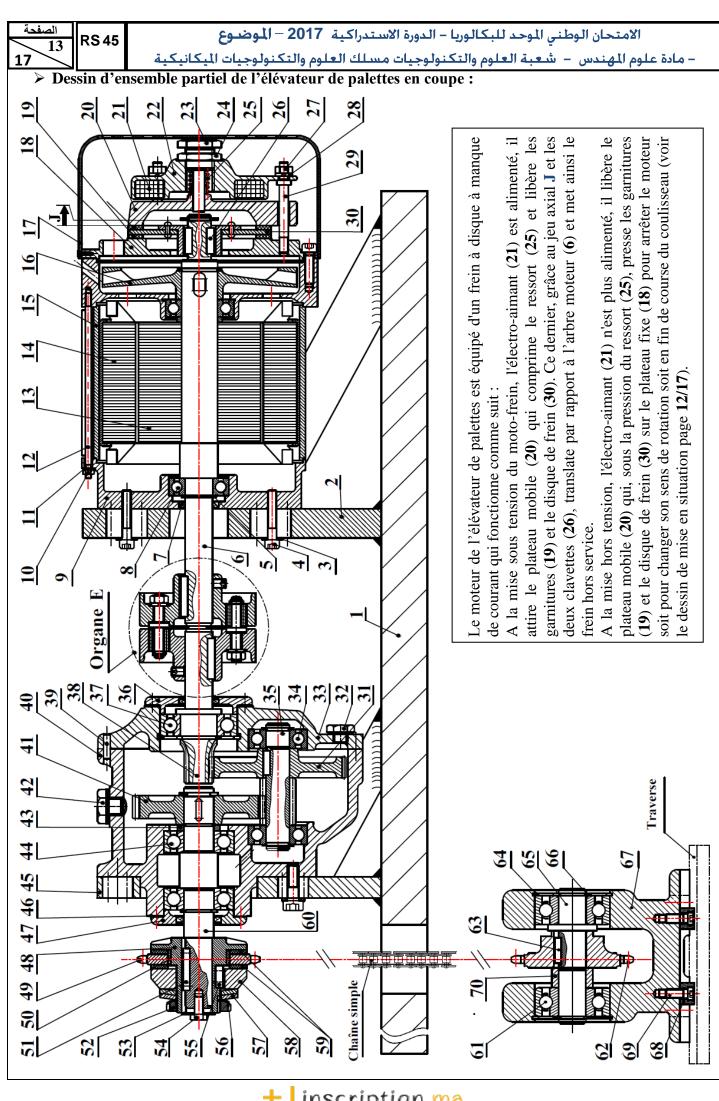
Tâche 3.5 :

En utilisant les **DRES pages 16/17** et **17/17** et les données du croquis ci-dessous :

a- Compléter le tableau suivant en indiquant pour chaque trajectoire de l'outil s'il s'agit d'un déplacement rapide ou de travail : /1,25pts

Trajectoire	Rapide ou Travail ?
OM-1	Rapide
1-2	
2-3	
3-4	
4-5	Travail
5-1	
1-OM	




b- Établir, en mode absolu **G90**, le tableau des coordonnées des points de la première passe du profil de la surface **R1**:

Repère	X	Y	Z
1	•••••		
2			
3			
4			
5			

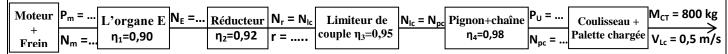
c- Compléter le programme permettant l'usinage de la première passe du profil de la surface **R1** : /4,5pts

N°	Codes		Commentaire et organisation du p	orogramme			
% Phas	% Phase 30		Nom du programme				
N10	G00 G40 G80 G90 M05 M09		Initialisation des données				
N20	G00 G52 Z0		Miss à l'arigine de la breche (OM)				
N30	G00 X0 Y0		Mise à l'origine de la broche (OM)				
N40			Chargement de l'outil				
N50		Réglage rotation broche sens horaire + Gamme de vitesse + Lubrification					
N60		Point 1					
N70		Point 2		Réalisation des			
N80		Point 3					
N90		Point 4	Réglage de la vitesse d'avance en mm/min	trajectoires			
N100		Point 5					
N110		Point 1					
N120		Retour OM	Appel inconditionnel de blocs				
N130	M02		Fin du programme				

الصفحة 14

RS 45

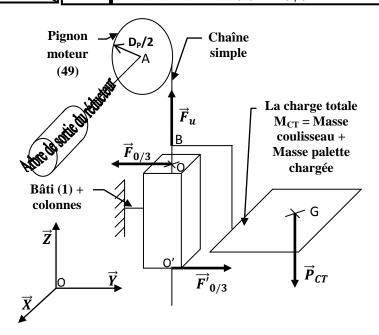
الامتحان الوطني الموحد للبكالوريا - الدورة الاستدراكية 2017 - الموضوع


- مادة علوم المهندس - شعبة العلوم والتكنولوجيات مسلك العلوم والتكنولوجيات الميكانيكية

Nomenclature :

35	1	Pignon arbré Z ₃₅ =20 dents	70	1	Entretoise
34	2	Roulement à une rangée de billes	69	2	Lardon d'orientation
33	1	Flasque	68	2	Vis à tête cylindrique à six pans creux
32	1	Bouchon de vidange	67	1	Support
31	1	Roue dentée Z ₃₁ =100 dents	66	2	Anneau élastique pour arbre
30	1	Disque de frein	65	1	Axe
29	3	Goujon	64	2	Anneau élastique pour alésage
28	3	Rondelle Grower	63	1	Clavette parallèle A
27	3	Ecrou hexagonal	62	1	Pignon récepteur Z _r =19 dents
26	2	Clavette parallèle forme A	61	2	Roulement à rangée de billes
25	1	Ressort	60	1	Arbre de sortie du réducteur
24	1	Vis spéciale	59	2	Garniture de friction
23	1	Ecrou hexagonal	58	1	Disque presseur
22	1	Corps porte électro-aimant	57	2	Rondelle élastique « Belleville »
21	2	Electro-aimant	56	1	Rondelle frein à longuette
20	1	Plateau mobile	55	1	Clavette parallèle A10x8x20
19	2	Garniture	54	1	Vis H.M8x16
18	1	Plateau fixe	53	1	Rondelle LLB
17	1	Cache	52	1	Ecrou à encoches
16	1	Ventilateur	51	1	Clavette parallèle A8x7x38
15	1	Bloc moteur	50	1	Bague de frottement
14	1	Stator	49	1	Pignon moteur Z _m =19 dents
13	1	Rotor	48	1	Moyeu du limiteur de couple
12	3	Goujon	47	1	Couvercle
11	3	Rondelle Grower	46	1	Cale de réglage
10	3	Ecrou hexagonal	45	1	Support réducteur
9	1	Cage	44	2	Roulement à rangée de billes
8	2	Roulement à une rangée de billes	43	1	Bague
7	1	Joint à lèvres	42	1	Bouchon de remplissage
6	1	Arbre moteur	41	1	Roue dentée Z ₄₁ =60 dents
5	1	Anneau élastique pour arbre	40	1	Carter
4	4	Vis à tête cylindrique à six pans creux	39	1	Pion de centrage
3	4	Rondelle plate	38	1	Pignon arbré Z ₃₈ =15 dents
2	1	Support moteur	37	1	Roulement à rangée de billes
1	1	Bâti	36	1	Couvercle
Rep	nb	Désignation	Rep	nb	Désignation

> Données pour la tâche 2.1 :


• Agencement de la chaîne de transmission de puissance mécanique dans l'élévateur de palettes :

- Hypothèses et modélisation pour le choix du moteur-frein (voir modélisation page suivante) :
 - Les liaisons sont considérées parfaites ;
 - Les solides sont indéformables ;
 - La masse des pièces est constante au cours du mouvement ;
 - Le repère associé au bâti peut être considéré comme un repère Galiléen ;
 - Le système peut être considéré comme plan (O; Y; Z);
 - L'inertie des pièces en mouvement de rotation sera négligée ;
 - Le coulisseau de l'élévateur est en mouvement uniformément varié et se déplace de bas vers le haut ;
 - La valeur de l'accélération terrestre (pesanteur) $g = 10 \text{ m/s}^2$;
 - La charge totale (masse coulisseau + masse palette chargée) : $M_{CT} = 50 + 750 = 800 \text{ kg}$;
 - La liaison entre le coulisseau de l'élévateur et le bâti : liaison glissière d'axe (\mathbf{O} ; \mathbf{Z}) assurée par des galets et des rails et ne transmet pas d'effort suivant l'axe \mathbf{Z} .

الامتحان الوطنى الموحد للبكالوريا - الدورة الاستدراكية 2017 - الموضوع

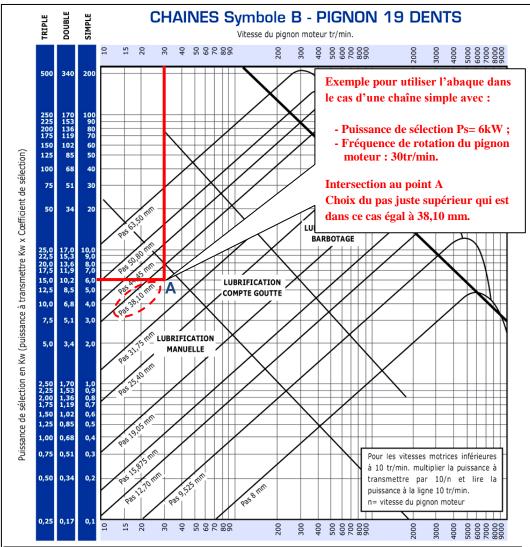
- مادة علوم المهندس - شعبة العلوم والتكنولوجيات مسلك العلوم والتكنولوجيات الميكانيكية

Extrait du catalogue MGM motori elettrici s.p.a pour le choix du moteur-frein

Moteur-frein MGM asynchrone				
trij	phasé fermé	3		
Fréquence de rotation N en tr/min	Puissance en KW	Désignation		
	4	BA 132 MA6		
1000	5.5	BA 132 MB6		
1000	7.5	BA 160 MB6		
	9.2	BA 160 LA6		
	4	BA 160 MA8		
750	5.5	BA 160 MB8		
750	7.5	BA 160 LA8		
	11	BA 180 LB8		

Données à n'utiliser que pour la tâche 2.2 :

• Données de sélection et abaque :


- Puissance de sélection **Ps = 5kw**;
- Fréquence de rotation du pignon moteur : 50 tr/min ;
- Entraxe nécessaire pour assurer la course de 5m exigée par le cahier de charges : C=9500 mm;
- Nombre de dents du pignon moteur \mathbf{Z}_m et de la roue réceptrice \mathbf{Z}_r :

$$Z_m = Z_r = 19 \text{ dents}$$
;

- Pas de la chaîne **P** (à déterminer);
- Valeur à ajouter pour obtenir le nombre de maillons pair juste supérieur : Y (à calculer);
- Formule de calcul de la longueur de la chaine $\mathbf{L_m}$ en nombre de maillons dans le cas où $\mathbf{Z_m} = \mathbf{Z_r}$:

$$\mathbf{L_{m}} = \frac{Z_{m} + Z_{r}}{2} + \frac{2C}{P} + Y$$

Abaque de sélection du pas de la chaîne

فحة	الصا
$\overline{}$	16
17	\

الامتحان الوطني الموحد للبكالوريا - الدورة الاستدراكية 2017 - الموضوع

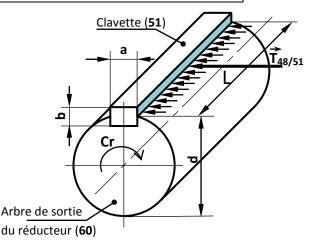
- مادة علوم المهندس - شعبة العلوم والتكنولوجيات مسلك العلوم والتكنولوجيات الميكانيكية

• Extrait du catalogue constructeur **BRAMPTON RENOLD** chaînes simples symbole **B** :

N° ISO	Réf. Brampton	Pas P en mm	Charge de rupture en newtons (N)
10B1	B 10053	15,875	23000
12B1	B 10063	19,05	30500
16B1	B 10083	25,40	63750
20B1	B 10103	31,75	95000
24B1	B 10129	38,10	160000
28B1	B 10149	44,45	196200
32B1	B 10169	50,80	255000

> Données pour la tâche 2.3 :

a = 8 mm ; b = 7 mm ;

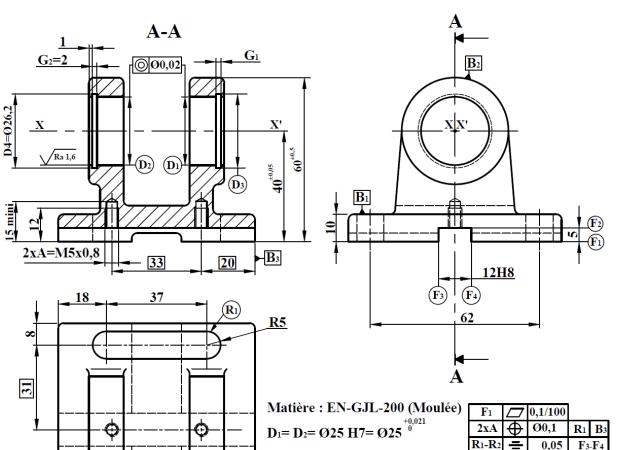

L = 38 mm (Longueur de la clavette);

d = 50 mm (Diamètre de l'arbre de sortie du réducteur);

 $C_r = 870 \text{ N.m}$ (Couple au niveau de l'arbre de sortie du réducteur);

 $Rpg = 120 \ N/mm^2$ (résistance pratique au glissement du matériau de la clavette).

 (\mathbf{R}_2)



Ø0,04

D1-**D**2

B₁ R₁-R₂

Dessin de définition partiel du support (67) :

 $\mathbf{D}_3 = \mathbf{D}_4$

Ra 3,2

 $G_1 = G_2$ 12 H8 = $12^{+0.027}$

Tolérance générale : ± 0,2 sauf indications

الامتحان الوطنى الموحد للبكالوريا - الدورة الاستدراكية 2017 - الموضوع

- مادة علوم المهندس - شعبة العلوم والتكنولوجيات مسلك العلوم والتكنولوجيات الميكانيكية

Avant projet d'étude de fabrication du support (67) :

N° Phase	Désignation	Surfaces usinées
10	Contrôle de brut	
20	Fraisage	F_{I}
30	Fraisage	R_1 , R_2 et $(F_2, F_3$ et $F_4)$
40	Tournage	$(D_1, D_2)_{\acute{E}b, \ 1/2f \ et \ f}, \ (G_1, D_3) \ et \ (G_2, D_4)$
50	Perçage-Taraudage	2 x A
60	Contrôle final	

Données (**Tâche 3.4**) relatives à l'opération d'ébauche de $\mathbf{D}_{1\acute{\mathbf{E}}\mathbf{b}} = \mathbf{D}_{2\acute{\mathbf{E}}\mathbf{b}} = \varnothing 22 \text{ mm}$

Vitesse de coupe Vc	Avance f	profondeur de passe a	pression spécifique de coupe Kc	rendement des machines η	Références des machines	Puissance des moteurs Pm
120 m/min	0,2 mm/tr	2 mm	210 daN/mm ²	0,7	Tr 01	1 kW
					Tr 02	2 kW
					Tr 03	3 kW
					Tr 04	4 kW

Données relatives à la tâche 3.5 :

- Outil de coupe et son correcteur : T1 D1 (fraise trois dents à coupe centrale diamètre 10 mm) ;
- Fréquence de rotation N = 1590 tr/min;
- Vitesse d'avance en mode pénétration verticale (plongée) V_{fp} = 47 mm/min ;
- Vitesse d'avance en mode usinage rectiligne (horizontal) $V_{fr} = 95 \text{ mm/min}$;
- Profondeur pour une passe : $\mathbf{a} = 4 \text{ mm}$;
- Lubrification lors de l'usinage;

- Tableaux des codes G et M :	
Fonctions M	Fonctions G
	G00 : Interpolation linéaire en rapid
M02 : Fin du programme	G01 : Interpolation linéaire en avanc
mez m uu programme	G02 : Interpolation circulaire sens he
M03 : Rotation de broche sens horaire	G03 : Interpolation circulaire sens tr
	G40 : Annulation de la correction d'o
M04 : Rotation de broche sens trigonométrique	G41 : correction du rayon d'outil à g
	G42 : correction du rayon d'outil à d
M05 : Arrêt broche	G52 : Programmation absolue (origi
M06 : Changement d'outil	G71 : Programmation en métrique
Wido . Changement a duth	G77 : Appel inconditionnel de blocs
M08 : Arrosage n° 1	G80 : Annulation de cycle d'usinage
	G90 : Programmation absolue des co
M09 : Arrêt d'arrosage	G92 : Limitation de la vitesse de bro
	G94 : Vitesse d'avance en mm/min
M42 : Gamme de vitesse de broche	G96 : Vitesse de coupe en m/min
	G97 : Vitesse de rotation broche en

الامتحان الوطني الموحد للبكالوريا

الدورة الاستدراكية 2017

-عناصر الإجابة -

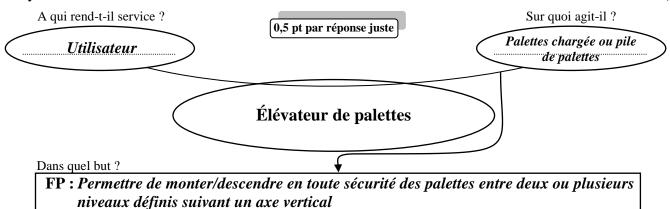
RR 45

مالتهجية	بالامتحانات	للتقويم و	مطنه	يركز ال	ال
Z-7-7		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		//-	

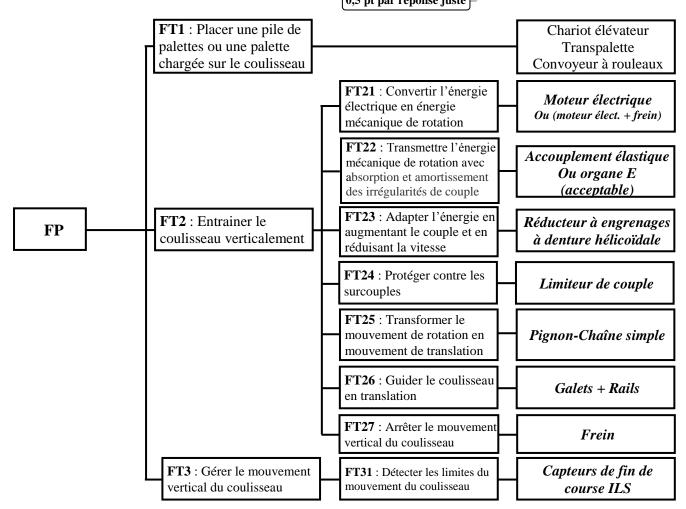
4	مدة الإنجاز	علوم المهندس	المادة
8	المعامل	شعبت العلوم والتكنولوجيات مسلك العلوم والتكنولوجيات الميكانيكيت	الشعبة أو المسلك

ÉLÉMENTS DE CORRECTION

N.B


Le correcteur est tenu de respecter à la lettre les consignes relatives aux répartitions des notes indiquées sur les éléments de correction الامتحان الوطني الموحد للبكالوريا - الدورة الاستدراكية 2017 - عناصر الإجابة - مادة علوم المهندس - شعبة العلوم والتكنولوجيات مسلك العلوم والتكنولوجيات الميكانيكية

Documents réponses


SEV 01:

Tâche 1.1: Étude fonctionnelle de l'élévateur de palettes.

a- Compléter, en se basant sur la présentation du support (**page 2/17**), le diagramme « bête à cornes » du système étudié : /1,5pt

b- Compléter, par les solutions technologiques proposées (page 2/17 et DRES pages 12/17, 13/17 et 14/17), le FAST suivant : (0,5 pt par réponse juste) /4pts

Tâche 1.2: Analyse technique de l'élévateur de palettes.

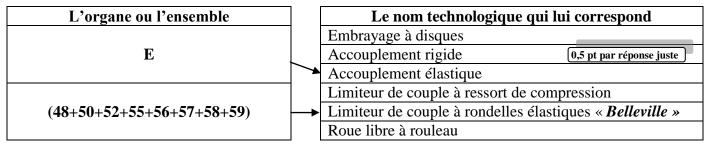
a- Donner, en analysant les données des **DRES pages 13/17** et **14/17**, le nom complet du frein utilisé dans l'élévateur de palettes en indiquant le type de frein et le type de sa commande : //pt

Frein (à disque) progressif à friction plane à commande électromagnétique 0,5 pt 0,5 pt

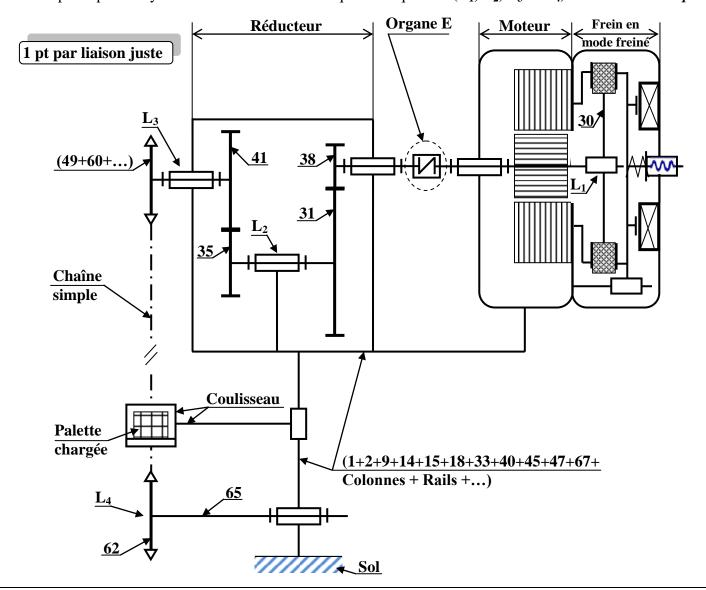
الامتحان الوطني الموحد للبكالوريا - الدورة الاستدراكية 2017 - عناصر الإجابة - مادة علوم المهندس - شعبة العلوم والتكنولوجيات مسلك العلوم والتكنولوجيات الميكانيكية

/1pt

b- Compléter le tableau de fonctionnement du frein, en se référant aux **DRES pages 13/17 et 14/17** et en utilisant les termes (donnés en désordre) de la liste suivante : Non – En contact - Comprimé - Attiré - Séparées - Oui - Poussé - Non comprimé.


| 0,25 pt par réponse juste | /2pts |

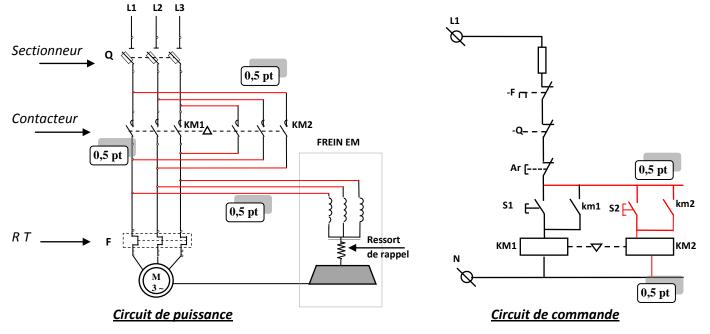
	Plateau mobile (20)	Ressort (25)	(18), (19+30) et (20)	Freinage
Bobine non alimentée	Poussé	Non comprimé	En contact	Oui
Bobine alimentée	Attiré	Comprimé	Séparées	Non


c- Citer deux avantages des engrenages à denture hélicoïdale utilisés dans le réducteur : 0,5 pt par réponse juste // Ipt - Engrènement plus progressif; Plus silencieux; Transmission d'efforts plus importants à vitesses élevées;

-Atténuation des vibrations ; réalisation facile d'un entraxe imposé en faisant varier l'angle d'hélice

d- Relier, par une flèche, l'organe ou l'ensemble au nom technologique qui lui correspond :

e- Compléter, en se référant aux **DRES pages 12/17, 13/17** et **14/17**, le schéma cinématique minimal simplifié par les symboles des liaisons mécaniques manquantes (**L**₁, **L**₂, **L**₃ et **L**₄): /4pts



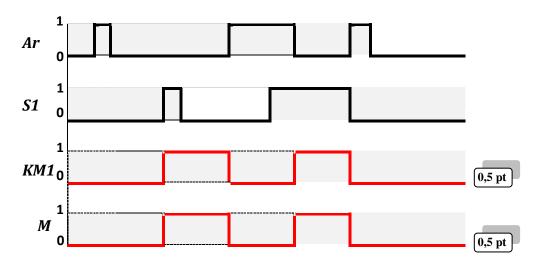
الامتحان الوطني الموحد للبكالوريا - الدورة الاستدراكية 2017 - عناصر الإجابة - مادة علوم المهندس - شعبة العلوم والتكنولوجيات مسلك العلوم والتكنولوجيات الميكانيكية

Tâche 1.3:

- **a-** La montée et la descente du coulisseau de l'élévateur à palettes sont assurées par un moteur-frein asynchrone triphasé **M** à deux sens de rotation commandé par deux contacteurs **KM1** (pour la montée) et **KM2** (pour la descente). Compléter sur le schéma ci-dessous :
 - a-1-le câblage du circuit de puissance du moteur-frein M à deux sens de rotation : /1,5pt
 - a-2-le câblage du circuit de commande du contacteur KM2 assurant la descente du coulisseau. : //pt

b- Déduire l'équation logique de **KM1** :

/0,5pt


$$KM1 = \overline{F}.\overline{Q}.\overline{Ar}.(S1 + km1)$$

c- Compléter le tableau ci-dessous, montrant le fonctionnement du moteur-frein **M** dans un seul sens, dans le cas où les contacts du sectionneur **Q** sont fermés et **M** est alimenté par le contacteur **KM1** : //pt

Entrées		km1	Sorties par (1 ou 0)		
S1	Ar	KIIII	Sorues pai	r (1 ou v)	
0	0	km1= 0	KM1= 0	M= 0	
0	1	km1= 0	KM1= 0	M= 0	
1	0	km1= 1	KM1= 1	M= 1	
1	1	km1= 0	KM1= 0	M= 0	

0,25 pt par ligne

d- Compléter le chronogramme du contacteur KM1 et du moteur-frein M selon les états de Ar et de s1: /1pt

الامتحان الوطني الموحد للبكالوريا - الدورة الاستدراكية 2017 - عناصر الإجابة

- مادة علوم المهندس - شعبة العلوم والتكنولوجيات مسلك العلوم والتكنولوجيات الميكانيكية

SEV 02:

Tâche 2.1 : (Prendre deux chiffres après la virgule dans tous les calculs de cette tâche)

a- Déterminer la fréquence de rotation N_{pc} (en tr/min), que doit avoir le pignon moteur à chaîne (49) de diamètre primitif $D_p = 192,02$ mm, pour que la chaîne simple assure un déplacement vertical de la charge totale à une vitesse $V_{LC} = 0,5$ m/s:

On $a: V_{LC} = R_p \times \omega_{pc}$ avec $R_p: rayon\ du\ pignon\ moteur\ (X)\ et\ \omega_{pc}: sa\ vitesse\ angulaire$ Aussi, $\omega_{pc} = \frac{\pi.N_{pc}}{30}$ donc: $N_{pc} = \frac{30.2.V_{LC}}{\pi.D_p}$ A.N: $N_{pc} = \frac{30.2.0.5}{\pi.192.02.10^{-3}} = 49,73\ tr/min:$

b- Déduire, en considérant qu'il n'y a pas de glissement entre les surfaces actives du limiteur de couple, la vitesse de rotation N_{lc} (en tr/min) du limiteur de couple et la vitesse de rotation N_{r} (en tr/min) de l'arbre de sortie du réducteur (60) :

$$N_{pc} = N_{lc} = N_r = 49,73 \ tr/min$$
:

c- Calculer, en utilisant la page 5/17 et les DRES pages 13/17 et 14/17, le rapport de réduction r du réducteur : //pt

$$r = \frac{\Pi Z_{menantes}}{\Pi Z_{men\acute{e}es}} = \frac{Z_{38} \times Z_{35}}{Z_{31} \times Z_{41}}$$
 $A.N: r = \frac{15 \times 20}{100 \times 60} = 0,05$

d- Déterminer, en prenant pour la suite du calcul la vitesse de rotation $N_r = 50$ tr/min et r = 0,05, la vitesse de rotation N_E (en tr/min) de l'organe E et déduire celle du moteur N_m (en tr/min) : //pt

$$r = \frac{N_r}{N_E} = 0,05$$
 donc $N_E = \frac{N_r}{r} = N_m$ $A.N$: $N_E = N_m = \frac{50}{0.05} = 1000 \ tr/min$

e- Déterminer, en utilisant les hypothèses et la modélisation des **DRES pages 14/17** et **15/17** et en appliquant le principe fondamental de la dynamique en translation en projection sur l'axe \vec{Z} à l'ensemble (coulisseau + palette chargée), l'intensité de l'effort F_u (en N) utile à la chaîne pour déplacer de bas vers le haut la charge totale M_{CT} à l'accélération limite en charge $\gamma_C = 0.5 \text{ m/s}^2$:

P.F.D appliqué à l'ensemble (coulisseau + palette chargée) en projection sur \vec{Z} : $F_u - P_{CT} = M_{CT} \times \gamma_C$ Donc $F_u = P_{CT} + M_{CT} \times \gamma_C = (M_{CT} \times g) + (M_{CT} \times \gamma_C) = M_{CT} \cdot (g + \gamma_C)$ $A.N: F_u = 800. (10 + 0.5) = 8400 N$

f- Déduire, en négligeant le frottement dans la liaison glissière assurant le guidage en translation du coulisseau par rapport au bâti, la puissance utile P_u (en kW) développée par l'effort F_u utile à la chaîne simple pour déplacer de bas vers le haut la charge totale à la vitesse $V_{LC} = 0.5$ m/s:

$$P_u = F_u \times V_{LC}$$

$$A.N: P_u = 8400 \times 0, 5 = 4200 \, W \qquad d'où \quad P_u = 4,20 \, kW$$

g- Calculer, selon l'agencement de la chaîne de transmission de puissance dans l'élévateur de palettes DRES page 14/17, le rendement global de la transmission η_g : /1pt

$$\begin{split} & \boldsymbol{\eta}_g = \boldsymbol{\eta}_1 \times \boldsymbol{\eta}_2 \times \boldsymbol{\eta}_3 \times \boldsymbol{\eta}_4 \\ A.N: & \boldsymbol{\eta}_g = 0,90 \times 0,92 \times 0,95 \times 0,98 = 0,77 \end{split}$$

h- Déduire, en prenant pour la suite du calcul $P_u = 4,20 \text{ kW}$ et $\eta_g = 0,77$, la puissance mécanique P_m (en kW) à fournir par le moteur-frein :

On
$$a: \eta_g = \frac{P_u}{P_m}$$
 donc $P_m = \frac{P_u}{\eta_g}$ $A.N: P_m = \frac{4,20}{0,77} = 5,45 \text{ kW}$

i- Choisir, à partir du **DRES page 15/17,** la désignation du moteur électrique convenable optimal : //pt

La désignation du moteur électrique convenable optimal est : BA 132 MB6

Tâche 2.2: En utilisant les données relatives à cette tâche **DRES page 15/17**, déterminer quelques paramètres de la chaîne simple. Pour ce faire, on vous demande de :

a- Proposer, en suivant l'exemple donné sur l'abaque de sélection, le pas de la chaine simple à choisir pour transmettre la puissance de sélection à la fréquence de rotation du pignon moteur : // Ipt

Le pas de la chaîne simple à choisir est : P=31,75 mm

الامتحان الوطني الموحد للبكالوريا - الدورة الاستدراكية 2017 - عناصر الإجابة

- مادة علوم المهندس - شعبة العلوم والتكنولوجيات مسلك العلوم والتكنولوجيات المكانيكية

Le mode de fonctionnement des chaînes (fatigue) fait que pour choisir convenablement une chaîne il suffit de comparer sa charge de rupture \mathbf{R} , indiquée dans les catalogues constructeurs, à l'effort de tension maximal \mathbf{F}_{max} , pondéré par un coefficient de sécurité $\mathbf{K} = \mathbf{R}/\mathbf{F}_{max}$, tel que \mathbf{K} doit-être compris entre $\mathbf{5}$ et $\mathbf{20}$.

b- Relever, à partir de l'extrait du catalogue constructeur, les références de la chaîne (N° ISO et Réf. Brampton), la valeur de sa résistance à la rupture $\bf R$ et conclure sur sa validité si $\bf F_{max} = 9000~\bf N$: /1,5pt

Références de la chaîne :
$$N^{\bullet}$$
 ISO : 20B1 ; Réf. Brampton : B 10103 0.5 pt $R = 95000 \text{ N}$ 0.5 pt

Conclusion: K = 95000/9000 = 10,55 donc la chaîne choisie est valide. 0.5 pt

c- Déterminer, en utilisant les données du **DRES page 15/17**, la longueur de la chaîne L_m (en maillons) en *nombre pair*, juste nécessaire pour assurer la course exigée par le cahier de charges : //pt

$$L_m = \frac{Z_m + Z_r}{2} + \frac{2C}{P} + Y$$

$$A.N \quad L_m = \frac{19+19}{2} + \frac{2\times9500}{31.75} + Y = 19 + 598,42 + Y = 618 \ maillons \ avec \ Y = 0,58$$

Tâche 2.3: Étant données les conditions de fonctionnement (démarrages fréquents et variations d'effort en fonctionnement), il est utile de vérifier la clavette (51), participant à la liaison complète démontable entre le moyeu du limiteur de couple (48) et l'arbre de sortie du réducteur (60), au cisaillement (entre autres). En utilisant les données du **DRES page 15/17**, on vous demande de :

a- Calculer l'intensité de l'effort tangentiel $\|\vec{T}\|$ (en N) résultant sur la clavette lors de la transmission du couple C_r entre le moyeu du limiteur de couple (48) et l'arbre de sortie du réducteur (60) : // 1pt

On
$$a: C_r = \|\vec{T}\| \times \frac{d}{2}$$
 donc: $\|\vec{T}\| = \frac{2.C_r}{d}$ A.N $\|\vec{T}\| = \frac{2 \times 870.10^3}{50} = 34800 \text{ N}$

b- Calculer la section S sollicitée au cisaillement (en mm^2), de la clavette :

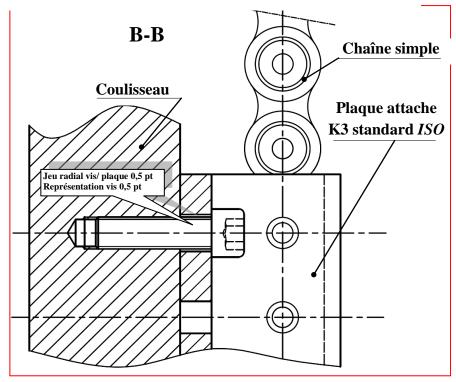
On $a:S=L\times a$

$$A.N.S = 38 \times 8 = 304 mm^2$$

c- Déterminer, en prenant $\|\vec{T}\| = 34800 \text{ N}$ et S=304 mm², la contrainte de cisaillement τ (en N/mm²): /1pt

On
$$a: \tau = \frac{\|\vec{T}\|}{S}$$
 $A.N \tau = \frac{34800}{304} = 114,47 N/mm^2$

d- Conclure sur la condition de résistance de la clavette au cisaillement :


/1pt

/1pt

La condition de résistance : $au \leq R_{pg}$ et $R_{pg}=120~N/mm^2$ donc la condition est vérifiée

Tâche 2.4 : Compléter, à l'échelle de représentation des pièces, la coupe partielle B-B (DRES page 12/17) montrant la liaison complète démontable entre la chaîne simple et le coulisseau par l'intermédiaire d'une plaque attache K3 standard *ISO* et des vis de fixation à tête cylindrique à six pans creux. Pour cela :

- **a-** Placer une des six vis pour assurer cette liaison complète démontable; //Ipt
- **b-** Compléter les parties manquantes du perçage et du taraudage ; /1pt
- c- Compléter les hachures
 manquantes. Hachures plaque 0,5 pt Hachures coulisseau 0,5 pt // 1pt

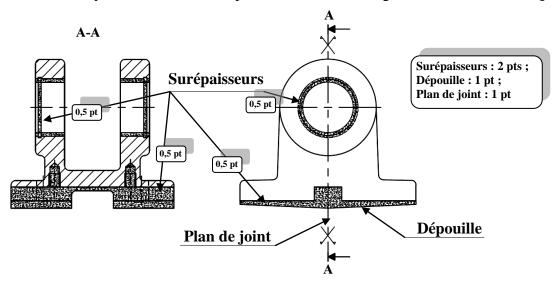
الامتحان الوطنى الموحد للبكالوريا - الدورة الاستدراكية 2017 - عناصر الإجابة - مادة علوم المهندس - شعبة العلوم والتكنولوجيات مسلك العلوم والتكنولوجيات الميكانيكية

 $\mathbf{F_1}$

SEV 03:

Tâche 3.1:

a- Identifier et expliquer la désignation du matériau du support (67) DRES page 16/17: /3,5pts EN-GJL-200:

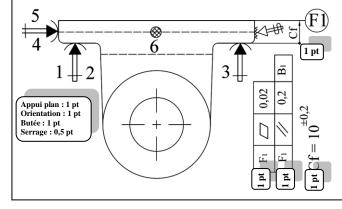

Fonte grise à graphite lamellaire dont la résistance minimale à la rupture par extension est de 200 MPa (N/mm²) 1 pt 1 pt

b- Compléter le tableau ci-dessous relatif à la spécification suivante :

0,1/100 /3pts

Nom de la spécification	Type de spécification	Interprétation
1 pt Planéité	Tolérance de forme	Une partie quelconque de la surface F1, sur une longueur de 100 mm, doit être comprise entre deux plans parallèles distants de 0,1 mm.

c- Compléter le dessin du brut capable du support (67) en indiquant les surépaisseurs d'usinage, le plan de joint et les dépouilles, sachant que l'avant trou de D_1 provient brut du moulage : /4pts



Tâche 3.2:

- a- Indiquer sur le croquis de phase, ci-contre, relatif à la phase 20 du support (67) DRES page 16/17:
 - a-1-La mise et le maintien en position de la pièce en utilisant les symboles de la deuxième norme; /3.5pts
 - a-2-Les cotes fabriquées dans cette phase et leurs

.....Voir croquis ci-contre

a-3-Les spécifications géométriques obtenues dans cette phase. /2pts

b- Mettre une croix dans les cases correctes relatives à l'opération d'usinage de \mathbf{F}_1 :

.....Voir croquis ci-contre......Voir

0,5 pt par case juste

Désignation de l'opération		L'outil utilisé		La machine utilisée		Le vérificateur de la cote $10^{\pm0,2}$	
Rainurage		Fraise à lamer		Fraiseuse	X	Règle graduée	
Épaulement		Fraise à surfacer	X	Aléseuse		Tampon lisse	
Surfaçage	X	Fraise à deux lèvres		Rectifieuse		Pied à coulisse 1/20	X

الامتحان الوطني الموحد للبكالوريا - الدورة الاستدراكية 2017 - عناصر الإجابة - مادة علوم المهندس - شعبة العلوم والتكنولوجيات مسلك العلوم والتكنولوجيات الميكانيكية

Tâche 3.3:

Étude partielle de la phase 40 : réalisation en ébauche des alésages D1 et D2 sur un tour parallèle.

- **a-** Étudier l'outil barre d'alésage réalisant les opérations d'ébauche et demi finition des alésages **D1** et **D2**. Pour ce faire, sur le croquis ci-dessous :
 - a-1- Installer les plans du référentiel en main (Pr, Ps, Pf, Po);

0,5 pt par plan

/2pts

a-2- Indiquer les angles de faces orthogonaux $(\alpha_0, \beta_0, \gamma_0)$ et l'angle de direction d'arête K_r .

/2pts

0,5 pt par angle

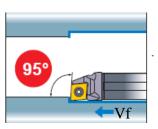
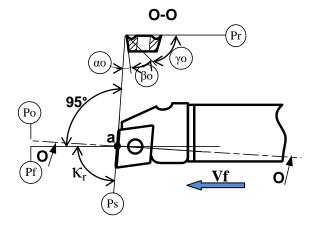



Figure montrant la barre d'alésage en mode de travail

b- Déduire la valeur de K_r : . 85 ullet

/1pt

/1,5pt

c- Mettre une croix dans la case de la réponse correcte caractérisant l'influence de l'usure de l'outil sur les dimensions des diamètres de D1 et D2 : //pt

7 1	
Les dimensions	vont augmenter
Des contensions	ron consinence

Les dimensions vont diminuer

Y

Tâche 3.4:

a- Calculer l'intensité de la composante tangentielle de l'effort de coupe **Fc** (en **N**) résultant de l'effort de coupe exercé par la pièce sur l'outil : /1,5pt

$$Fc = Kc \times a \times f$$
 A.N: $Fc = 2100 \times 2 \times 0, 2 = 840 \text{ N}$

b- Déterminer, en prenant $\mathbf{Fc} = \mathbf{850} \, \mathbf{N}$, la puissance \mathbf{Pu} (en \mathbf{kW}) utile à la coupe :

$$Pu = Fc \times Vc$$
 $A.N:$ $Pu = 850 \times \frac{120}{60} = 1700 W = 1,70 kW$

c- Déduire la puissance minimale à fournir par le moteur de la machine **Pm** (en **kW**): /1,5pt

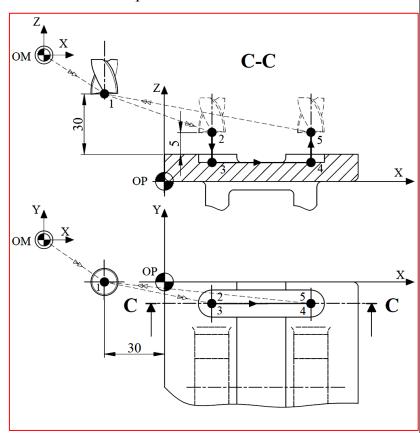
$$\eta = \frac{Pu}{Pm} \ donc \ Pm = \frac{Pu}{\eta}$$
A. N: $Pm = \frac{1,70}{0,7} = 2,428 \ kW$

d- Choisir, à partir du tableau **DRES page 17/17**, la référence de la machine adéquate : // Ipt

Tr 03

نة	الصفد
$\overline{}$	9
9	

الامتحان الوطني الموحد للبكالوريا - الدورة الاستدراكية 2017 - عناصر الإجابة - مادة علوم المهندس - شعبة العلوم والتكنولوجيات مسلك العلوم والتكنولوجيات الميكانيكية


Tâche 3.5:

En utilisant les **DRES pages 16/17** et **17/17** et les données du croquis ci-dessous :

a- Compléter le tableau suivant en indiquant pour chaque trajectoire de l'outil s'il s'agit d'un déplacement rapide ou de travail : /1,25pts

0,25 pt par réponse juste

	o,ze pe par reponse jusce		
Trajectoire	Rapide ou Travail ?		
OM-1	Rapide		
1-2	Rapide		
2-3	Travail		
3-4	Travail		
4-5	Travail		
5-1	Rapide		
1-OM	Rapide		

b- Établir, en mode absolu **G90**, le tableau des coordonnées des points de la première passe du profil de la surface **R1**:

Repère	X	Y	Z
1	-30	0	40
2	18	-8	15
3	18	-8	6
4	55	-8	6
5	55	-8	15

c- Compléter le programme permettant l'usinage de la première passe du profil de la surface R1 : /4,5pts

N°	Codes	Commentaire et organisation du programme		
% Phas			Nom du programme	
N10	G00 G40 G80 G90 M05 M09	-	Initialisation des données	
N20	G00 G52 Z0		March Production In In Invalid (OM)	
N30	G00 X0 Y0	Mise à l'origine de la broche (OM)		
N40	T1 D1 M06		Chargement de l'outil	
N50	G97 S1590 M42 M03 M08		Réglage rotation broche sens horaire + Gamme de vitesse + Lubrification	
N60	G00 X-30 Y0 Z40	Point 1		Réalisation des trajectoires
N70	X18 Y-8 Z15	Point 2		
N80	G01 G94 F47 Z6	Point 3		
N90	G94 F95 X55	Point 4	Réglage de la vitesse d'avance en mm/min	
N100	Z15	Point 5		
N110	G00 X-30 Y0 Z40	Point 1		
N120	G77 N10 N30	Retour OM	Appel inconditionnel de blocs	
N130	M02		Fin du programme	