

الامتحان النبوط المتحال الوطني الموحد للبكالوريا المتحال الوطني الموحد للبكالوريا المتحال الامتحال المتحال ال

الدورة العادية 2013

الموضوع

NS22

الرياضيات	المادة
شعبة العلوم التجريبية بمسالكها وشعبة العلوم والتكنولوجيات بمسلكيها	الشعبرة) أو المسلك

معلومات عامة

- يسمح باستعمال الآلة الحاسبة غير القابلة للبرمجة ؟
 - مدة إنجاز موضوع الامتحان : 3 ساعات ؟
- عدد الصفحات : 3 صفحات (الصفحة الأولى تتضمن معلومات والصفحتان المتبقيتان تتضمنان تمارين الامتحان)؟
 - يمكن للمترشح إنجاز تمارين الامتحان حسب الترتيب الذي يناسبه ؟
- في حالة عدم تمكن المترشح من الإجابة عن سؤال ما ، يمكنه استعمال نتيجة هذا السؤال لمعالجة الأسئلة الموالية ؛
 - ينبغي تفادي استعمال اللون الأحمر عند تحرير الأجوبة ؟
 - بالرغم من تكرار بعض الرموز في أكثر من تمرين ، فكل رمز مرتبط بالتمرين المستعمل فيه ولا علاقة له بالتمارين السابقة أو اللاحقة .

معلومات خاصة

يتكون الموضوع من خمسة تمارين مستقلة فيما بينها و تتوزع حسب المجالات كما يلي :

النقطة الممنوحة	المجال	التمرين
3 نقط	الهندسة الفضائية	التمرين الأول
3 نقط	الأعداد العقدية	التمرين الثاني
3 نقط	حساب الاحتمالات	التمرين الثالث
3 نقط	المتتاليات العددية	التمرين الرابع
8 نقط	دراسة دالة وحساب التكامل	التمرين الخامس

بمسالكها وشعبة العلوم والتكنولوجيات بمسلكيها

الموضوع

التمرين الأول (3ن)

1

0.5

0.5

0.75

0.75

B(1,0,1) و A(-1,1,0) ، النقط الفضاء المنسوب إلى معلم متعامد ممنظم مباشر $(O,\vec{i},\vec{j},\vec{k})$ ، النقط و الفلكة Ω التي مركزها Ω وشعاعها Ω

$$(OAB)$$
 و تحقق من أن $x+y-z=0$ معادلة ديكارتية للمستوى ($\overrightarrow{OA} \wedge \overrightarrow{OB} = \overrightarrow{i} + \overrightarrow{j} - \overrightarrow{k}$ أ- بين أن

$$\sqrt{6}$$
 به دائرة (Γ) به المعامل الم

(OAB) ليكن (Δ) المستقيم المار من النقطة Ω والعمودي على المستوى (Δ

$$(\Delta)$$
 المستقيم (Δ) المستقيم $\begin{cases} x=1+t \\ y=1+t \end{cases}$ تمثيل بارامتري للمستقيم $z=-1-t$

 (Γ) جدد مثلوث إحداثيات مركز الدائرة

التمرين الثاني (3ن)

نعتبر ، في المستوى العقدي المنسوب إلى معلم متعامد ممنظم مباشر $\left(O,\vec{u},\vec{v}\right)$ ، النقط A و B و B التي

$$c=-2+5i$$
 و $b=4+8i$ و $a=7+2i$: محيث $a=7+2i$ و $a=6$ و $a=6$ و $a=7+2i$ الحاقها على التوالي هي $a=7+2i$ و بين أن $a=7+2i$

$$b-a$$

$$(\overrightarrow{AB}, \overrightarrow{AC})$$
 بـ استنتج أن $AC = AB\sqrt{2}$ وأعط قياسا للزاوية الموجهة

$$\frac{\pi}{2}$$
 ليكن R الدوران الذي مركزه R و زاويته (2

$$d=10+11i$$
 هو R بالدوران A هو D أـ بين أن لحق النقطة D صورة النقطة

. بـ احسب
$$\frac{d-c}{b-c}$$
 و استنتج أن النقط B و C و مستقيمية $\frac{d-c}{b-c}$

(¿ ¿) التمرين الثالث

يحتوى صندوق على 10 كرات: خمس كرات حمراء وثلاث كرات خضراء وكرتان بيضاوان (لا يمكن التمييز بين الكرات باللمس) .

نسحب عشوائيا و في آن واحد أربع كرات من الصندوق.

A: " الحصول على كرتين حمراوين و كرتين خضراوين " 1) نعتبر الحدثين التاليين: B: " لا توجد أية كرة بيضاء من بين الكرات الأربع المسحوبة "

$$P(B) = \frac{1}{3}$$
 و $P(A) = \frac{1}{7}$

. المتغير العشوائي الذي يربط كل سحبة بعدد الكرات البيضاء المسحوبة X

أ- تحقق من أن القيم التي يأخذها المتغير العشوائي X هي 0 و 1 و 20.25

$$X$$
 بين أن $P(X=1) = \frac{8}{15}$ ثم حدد قانون احتمال المتغير العشوائي $P(X=1) = \frac{8}{15}$

التمرين الرابع (3ن)

NS22

الامتحان الوطني الموحد للبكالوريا -الدورة العادية ك102 —الموضوع- مادة: الرياضيات- شعبة العلوم التجريبية بمسالكها وشعبة العلوم والتكنولوجيات بمسلكيها

 $I\!N^*$ نكن $u_{n+1}=rac{25}{10-u_n}$ و $u_1=0$ نكل u_n نكل من $u_{n+1}=rac{25}{10-u_n}$ نكل المتتالية العددية المعرفة بما يلي

$$I\!N^*$$
 نعتبر المتتالية العددية $v_n=rac{5}{5-u_n}$: المعرفة بما يلي المعرفة بما يلي (v_n

$$IN^*$$
 نکل $v_{n+1} - v_n = 1$ نکل نم تحقق من أن $v_{n+1} = \frac{10 - u_n}{5 - u_n}$ نکل المن $v_{n+1} = \frac{10 - u_n}{5 - u_n}$ نکل من $v_{n+1} = \frac{10 - u_n}{5 - u_n}$

$$IN^*$$
 יט איז וא ואט $u_n = 5 - \frac{5}{n}$ יט וויד פ ווייד ואט ווי $v_n = n$ יאט ייך איז ווייד וויד ווייד ווי

 $\lim_{n\to +\infty} u_n$ چ۔ حدد

1

0.25

1

1

التمرين الخامس (8ن)

 $f(x) = (x-2)^2 e^x$: نعتبر الدالة العددية f المعرفة على f بما يلي

 $(1\ cm\$ و ليكن (C) المنحنى الممثل للدالة f في معلم متعامد ممنظم (C) الوحدة و ليكن

ب- بین أن
$$\infty + \infty = \lim_{x \to +\infty} \frac{f(x)}{x}$$
 ثم استنتج أن المنحنی (C) یقبل، بجوار $\infty + \infty$ فرعا شلجمیا یتم تحدید اتجاهه.

$$IR$$
 نک x کا $f(x) = x^2 e^x - 4x e^x + 4e^x$ کا اکا $f(x) = x^2 e^x - 4x e^x + 4e^x$ کا 0.25

(
$$IN^*$$
 من n کی $\lim_{x\to\infty} x^n e^x = 0$ نذکر أن $\lim_{x\to\infty} f(x) = 0$ کی $\lim_{x\to\infty} f(x) = 0$ اول هذه النتیجة هندسیا

$$IR$$
 نکل x نکل $f'(x) = x(x-2)e^{x}$ نکل من $f'(x) = x(x-2)e^{x}$ نکل من

$$[0,2]$$
 بين أن الدالة f تزايدية على كل من المجالين $[0,\infty]$ و $[0,\infty]$ وأن الدالة f تناقصية على المجال المجالين $[0,0]$

$$R$$
 على على الدالة f على R على R على 0.5

اً - بين أن
$$f''(x) = (x^2 - 2)e^x$$
 لكل $f''(x) = (x^2 - 2)e^x$ أ- بين أن $f''(x) = (x^2 - 2)e^x$ لكل عير مطلوب .

$$\left(O,\vec{i},\vec{j}\right)$$
 في المعلم $\left(C\right)$

$$\int_{0}^{1} xe^{x} dx$$
 على R ثم احسب $h: x \mapsto xe^{x}$ على $H: x \mapsto (x-1)e^{x}$ ثم احسب 0.5

$$\int_{0}^{1} x^{2} e^{x} dx = e - 2$$
 بين أن: 0.75

ج- بين أن مساحة حيز المستوى المحصور بين المنحنى
$$(C)$$
 ومحور الأفاصيل والمستقيمين اللذين $x=0$ معادلتاهما $x=0$ و $x=0$ هي $x=0$

$$x \in IR$$
 , $x^2 = e^{-x} + 4x - 4$: استعمل المنحنى (C) لإعطاء عدد حلول المعادلة (6 منحنى)

جوبلة المتحان الدورة العادية 2013

@@%@@%@@%@@%@@%@@%@@%

$$\left\{ egin{array}{ll} \overrightarrow{OA}(-1;1;0) & \ \overrightarrow{OB}(1;0;1) & \ \end{array}
ight.$$
 لدينا $\left\{ egin{array}{ll} A(-1;1;0) & \ B(1;0;1) & \ O(0;0;0) & \ \end{array}
ight.$ و منه $\left\{ \overrightarrow{OA} \wedge \overrightarrow{OB} \right\} = \left(egin{array}{ll} -1 & \ 1 & \ \end{array} \right) \wedge \left(egin{array}{ll} 0 & \ \end{array} \right)$

$$\overrightarrow{OA} \wedge \overrightarrow{OB} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \wedge \begin{pmatrix} 0 \\ 1 \end{pmatrix} \qquad \vdots$$

$$= \begin{vmatrix} 1 & 0 \\ 0 & 1 \end{vmatrix} \vec{i} - \begin{vmatrix} -1 & 1 \\ 0 & 1 \end{vmatrix} \vec{j} + \begin{vmatrix} -1 & 1 \\ 1 & 0 \end{vmatrix} \vec{k}$$

$$= \vec{i} + \vec{j} - \vec{k}$$

لتكن M(x;y;z) نقطة من المستوى M(x;y;z) . نعلم أن المتجهة $\overline{OA} \wedge \overline{OB}$ متجهة منظمية على المستوى OAB .

انن فهي عمودية على جميع متجهات المستوى (OAB)

إذن المتجهتان \overrightarrow{OM} و $\overrightarrow{OB} \wedge \overrightarrow{OB} \wedge \overrightarrow{OB}$ متعامدتان يعنى ، باستعمال الجداء السلمى : $\overrightarrow{OM} \cdot (\overrightarrow{OA} \wedge \overrightarrow{OB}) = 0$

x + y - z = 0 : يعني $\begin{pmatrix} x \\ y \\ z \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix} = 0$: يعني الم

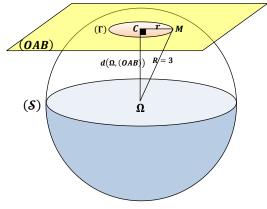
و هذه الكتابة الأخيرة تميز نقط المستوى (OAB) إذن فهي معادلة ديكارتية للمستوى (OAB) .

(OAB): x + y - z = 0 و $\Omega(1;1;-1)$ لدينا

$$d(\Omega, (OAB)) = \frac{|1+1-(-1)|}{\sqrt{1^2+1^2+(-1)^2}} = \frac{3}{\sqrt{3}} = \sqrt{3} : \psi$$

و نعلم أن (\mathcal{S}) فلكة مركزها Ω و شعاعها R=3 . $d\big(\Omega,(OAB)\big) < Rayon(\mathcal{S})$. يعني $\sqrt{3} < 3$: نلاحظ إذن أن $\sqrt{3} < 3$. إذن المستوى OAB يقطع الفلكة OAB وفق دائرة OAB مركزها OAB . $C(\alpha;\beta;\gamma)$

: لتحديد قيمة الشعاع r نستعين بالشكل التالي



 $(\Omega C) \perp (CM)$ إذن : $(\Omega C) \perp (\Omega C) \perp (\Omega C)$ بن خلال هذا الشكل نلاحظ أن : $(\Omega C) \perp (\Omega C)$ نستطيع إذن تطبيق مبر هنة فيتاغورس في $(\Omega C) \perp (\Omega C)$

$$\Omega M^2 = \Omega C^2 + C M^2$$
 : إذن $r = \sqrt{3^2 - \left(\sqrt{3}\right)^2} = \sqrt{6}$: يعني $3^2 = \left(\sqrt{3}\right)^2 + r^2$: يعني

• [

اليكن (Δ) المستقيم المار من Ω و العمودي على المستوى (Δ) . و لتكن M(x;y;z) نقطة من (Δ) .

بما أن (Δ) عمودي على (OAB) و $\overrightarrow{OA} \wedge \overrightarrow{OB}$ منظمية على (OAB) فإن أي متجهة موجهة لـ (Δ) تكون مستقيمية مع المتجهة $\overrightarrow{OA} \wedge \overrightarrow{OB}$. لدينا $\overrightarrow{\Omega M}$ متجهة موجهة للمستقيم (Δ) .

ERCUEL

اذن المتجهتان $\widehat{\Omega M}$ و $\widehat{OB} \wedge \widehat{OB}$ مستقيميتان .

$$(\exists t \epsilon \mathbb{R}) \; ; \; \overline{\Omega M} = t ig(\overline{O A} \wedge \overline{O B} ig) \; \; :$$
يعني

$$(\exists t \in \mathbb{R}) \ ; \ \begin{pmatrix} x-1 \\ y-1 \\ z+1 \end{pmatrix} = t \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix} \quad : \mathcal{G}^{\dagger}$$

$$(\Delta): \left\{ egin{array}{ll} x-1=t \ y-1=t \end{array}
ight. ; \; (t \in \mathbb{R}) \end{array}
ight.$$
يعني :

$$\left(\Delta\right): \left\{egin{array}{ll} x=t+1\ y=t+1\ z=-t-1 \end{array}
ight. ; \; (t \in \mathbb{R})
ight.$$
 : يعني

و هذه الكتابة الأخيرة عبارة عن تمثيل بارامتري للمستقيم (Δ) .

بما أن (Δ) مار من Ω و عمودي على (OAB) فإن (Δ) و (ΩC) منطبقان يعني $(\alpha; \beta; \gamma) \in (\Delta)$

 $C(lpha;eta;\gamma) \in (OAB)$: و لدينا من جهة ثانية

 $\left\{egin{array}{ll} C(lpha;eta;\gamma)\in(\Delta) \ C(lpha;eta;\gamma)\in(OAB) \end{array}
ight.$: نحصل إذن على النظمة التالية

$$\begin{cases} (\Delta): \begin{cases} x = t + 1 \\ y = t + 1 \end{cases}; (t \in \mathbb{R}) \\ z = -t - 1 \end{cases} : t \in \mathbb{R}$$

$$(OAB): x + y - z = 0$$

$$\left\{egin{array}{ll} lpha=1+t \ eta=1+t \ \gamma=-1-t \ lpha+eta-\gamma=0 \end{array}
ight.$$
 : eta و eta و eta و eta و eta نجد

نعوض بعد ذلك α و β و γ بالتعابير التي تضم البار امتر t في آخر معادلة نجد : α نجد : α بالتعابير التي تضم البار امتر α نجد : α بالتعابير التعابير التي تضم البار امتر α في آخر معادلة بالتعابير التعابير التعابير

و نحل هذه المعادلة الظريفة من الدرجة الأولى بمجهول واحد نجد:

$$egin{array}{ll} lpha=1-1=0 & t=-1 : \dotarrho=3t+3=0 \ eta=1-1=0 & lpha=1-1=0 \ arrho=-1+1=0 \end{array}$$
نعوض t بالقيمة t في تعابير $lpha$ و $lpha$ و $\gamma=1+1=0$

إذن النقطة C التي نبحث عنها ما هي إلا C أصل المعلم . و بالتالي (Γ) دائرة مركزها C أصل المعلم .

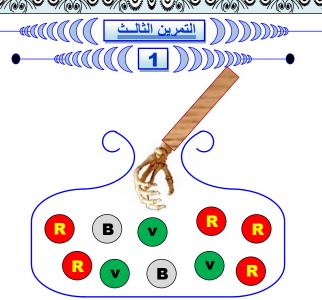
التمرين الثاني [[]]

(1+i)(-3+6i) = -3+6i-3i-6 = -9+3i

$$rac{c-a}{b-a}$$
 الهدف من هذه المتساوية هو توظيفها أثناء حساب

$$\frac{c-a}{b-a} = \frac{(-2+5i)-(7+2i)}{(4+8i)-(7+2i)} = \frac{-9+3i}{-3+6i}$$
$$= \frac{(1+i)(-3+6i)}{(-3+6i)} = (1+i)$$

أجوبة امتحان الدورة العاديــة 2013 من إعداد الأستاذ بدر الدين الفاتحى: () رمضان 2013 الصفحة: 140



عندما نسحب عشوائيا و في آن واحد أربع كرات من صندوق يحتوي على . 10 كرات فإنه توجد C_{10}^4 نتيجة ممكنة

 $card(\Omega) = C_{10}^4 = 210$: يعني

بحيث Ω هو كون امكانيات هذه التجربة العشوائية.

$$p(A) = p \begin{pmatrix} i$$
 کرتان کرتان کرتان کرتان کرتان او کرتان کرتان او کرتان کرتان کرتان او کرتان کرت

$$p\left(\begin{array}{c} \text{كرتان بيضاوين } \\ \text{كرتان بيضاوين } \\ \text{ (e كرتان بيضاوين)} \\ \text{ (e كرتان بيضافين)} \\ \text{ (b كرتان بيضافين)} \\ \text{ (اللون الأبيض)} \\ \\ = \frac{C_2^1 \times C_8^3}{210} + \frac{C_2^2 \times C_8^2}{210} = \frac{2 \times 56}{210} + \frac{28}{210} = \frac{2}{3} \\ \\ \text{ (e) (B) } \\ \text{ (e) (B) } \\ \text{ (e) (B) } \\ \text{ (e) (B) } \\ \text{ (e) (B) } \\ \text{ (f) (b) (b) } \\ \text{ (f) (b$$

ليكن X المتغير العشوائي الذي يربط كل سحبة (يعني سحب أربع كرات في أن واحد) بعدد الكرات المسحوبة.

يضم الصندوق كرتين بيضاوين و 8 كرات تخالف اللون الأبيض.

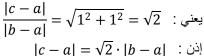
إذن عندما نسحب في أن واحد أربع كرات فإنه يُحتمل الحصول على كرات كلها تخالف الأبيض ، أو الحصول على كرة بيضاء واحدة و الباقي يخالف الأبيض، أو الحصول على كرتين بيضاوين و كرتين غير ذلك .

إذن القيم الني يأخذها المتغير العشوائي هي : 0 و 1 و 2 $X(\Omega) = \{0; 1; 2\}$: أو بتعبير أجمل

) رمضان 2013

<u>%00%00%00%00%00%00%00%</u>

 $\left|\frac{c-a}{b-a}\right| = |1+i|$ لدينا $\frac{c-a}{b-a} = 1+i$ الدينا



 $AC = \sqrt{2} \cdot AB$: أي

 $\frac{c-a}{b-a}=1+i$: من جهة ثانية ، لدينا

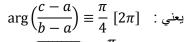
: لنكتب العدد العقدي (1+i) على الشكل المثلثي

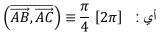
$$(1+i) = \sqrt{2} \left(\frac{\sqrt{2}}{2} + i \frac{\sqrt{2}}{2} \right)$$
$$= \sqrt{2} \left(\cos \left(\frac{\pi}{4} \right) + i \sin \left(\frac{\pi}{4} \right) \right) = \sqrt{2} e^{\frac{i\pi}{4}}$$

EXCEL

$$\frac{c-a}{b-a} = \sqrt{2}e^{\frac{i\pi}{4}}$$
 : إذن

$$\arg\left(\frac{c-a}{b-a}\right) \equiv \arg\left(\sqrt{2}e^{\frac{i\pi}{4}}\right) [2\pi]$$
 و منه :





$$\mathcal{R}_{B}\left(rac{\pi}{2}
ight):\, (\mathcal{P}) \;\; \mapsto \;\; (\mathcal{P})$$
لدينا الدوران \mathcal{R} معرف بما يلي :

 $\mathcal{R}(A) = D$: ننطلق من المعطى

إذن حسب التعريف العقدي للدوران نكتب:

$$\left(aff(D) - aff(B)\right) = e^{\frac{i\pi}{2}} \left(aff(A) - aff(B)\right)$$

$$(d-b)=e^{rac{i\pi}{2}}(a-b)$$
 : يعني

$$d-4-8i=i(7+2i-4-8i)$$
 : يعني

$$d = 7i - 2 - 4i + 8 + 4 + 8i$$
 : يعني

d = 10 + 11i : أي

$$\frac{d-c}{b-c} = \frac{(10+11i) - (-2+5i)}{(4+8i) - (-2+5i)}$$
$$= \frac{12+6i}{6+3i} = \frac{2(6+3i)}{(6+3i)} = 2$$

$$(d-c) = 2(b-c)$$
 : و منه $\frac{d-c}{b-c} = 2$: إذن

 $\overrightarrow{CD} = 2 \overrightarrow{CB}$: نكتب نكتب المتجهات نكتب

اذن النقط C و B و D نقط مستقيمية .

يمكن أن نجيب بطريقة أخرى مبينة كما يلى:

$$rg\left(rac{d-c}{b-c}
ight)\equiv 0\;[2\pi]$$
 الْاِنَا : $rac{d-c}{b-c}=2$ الْاِنَا : $\left(\overline{\overrightarrow{CB}},\overline{\overrightarrow{CD}}
ight)\equiv 0[2\pi]$ يعني : $0[2\pi]$

انن النقط C و B و D نقط مستقيمية .

أجوبة امتحان الدورة العادية 2013 من إعداد الأستاذ بدر الدين الفاتحى: (

الصفحة: 141

لدينا الحدث [X=1] هو الحصول بالضبط على كرة بيضاء واحدة و ثلاث كرات مخالفة للون الأبيض.

$$p[X=1]=rac{C_2^1 imes C_8^3}{210}=rac{2 imes 56}{210}=rac{8}{15}$$
 : إذن نقصد بقانون احتمال المتغير العشوائي X احتمال كل قيمة من قيم

هذا المتغير العشوائي .

 $p[X=0]=rac{1}{3}$: إذن $p(B)=rac{1}{3}$: (1 ليينا حسب السؤال $p[X=0]=rac{1}{3}$ الآن أن نحسب p[X=2]الحدث [X=2] هو الحصول بالضبط على كرتين بيضاوين و كرتين تخالفين الأبيض

$$p[X=2] = \frac{C_2^2 \times C_8^2}{210} = \frac{28}{210} = \frac{2}{15} : 0$$
اذن :

و بالتالي قانون احتمال المتغير العشوائي X هو التطبيق P_X المعرف بما يلي :

$$P_X : \{0; 1; 2\} \mapsto [0; 1]$$

$$0 \mapsto P_X(0) = \frac{1}{3}$$

$$1 \mapsto P_X(1) = \frac{8}{15}$$

$$2 \mapsto P_X(2) = \frac{2}{15}$$

و للتأكد من صحة الجواب يجب أن نتحقق من أن: $P_X(0) + P_X(1) + P_X(2) = 1$

: ليكن $n \in \mathbb{N}^*$ لدينا $| 5 - u_{n+1} | = 5 - \frac{25}{10 - u_n} = \frac{50 - 5u_n - 25}{10 - u_n}$ $=\frac{25-5u_n}{10-u_n}=\frac{5(5-u_n)}{5+(5-u_n)}$

نبين بالترجع صحة العبارة (P_n) المعرفة بما يلى :

$$(P_n): (\forall n \in \mathbb{N}^*) ; 5 - u_n > 0$$

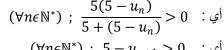
 $5 - u_n > 0$: يعنى 5 - 0 > 0 : لدينا

اذن العبارة (P_1) صحيحة . $(\forall n \in \mathbb{N}^*)$: $5 - u_n > 0$: نفترض أن

إذن الكمية $(5-u_n)$ كمية موجبة قطعا .

و منه فإن الكميتان $5 - (5 - u_n)$ و $5 - (5 - u_n)$ موجبتان قطعا .

إذن $\frac{5(5-u_n)}{5+(5-u_n)}$ كمية موجبة قطعا باعتبار ها خارج كميتين موجبتين قطعا



 $(\forall n \in \mathbb{N}^*)$; $5 - u_{n+1} > 0$: أي

إذن العبارة (P_{n+1}) صحيحة .

 (P_1) est vraie $\{(P_n) \ implique \ (P_{n+1}) \ ; \ (orall n \epsilon \mathbb{N}^*) \ | :$ نحصل إذن على ما يلي ا

> (P_n) est toujours vraie : إذن حسب مبدأ الترجع $(\forall n \in \mathbb{N}^*)$; $5 - u_n > 0$: أي

أجوبة امتحان الدورة العادية 2013 من إعداد الأستاذ بدر الدين الفاتحى: (

#((((((<mark>...2</mark> (()))))))

 $(\forall n \in \mathbb{N}^*)$; $v_{n+1} - v_n = 1$: بما أن $(\forall n \in \mathbb{N}^*)$; $v_{n+1} = v_n + 1$: يعني . 1 فإن $(v_n)_{n\in \mathbb{N}^*}$ متتالية حسابية أساسها : يكتب على السكل يأدن حدها العام v_n يكتب

 $(\forall n \in \mathbb{N}^*)$; $v_n = v_1 + (n-1)1$

$$v_1 = \frac{5}{5 - u_1} = \frac{5}{5 - 0} = 1$$
 :
 $(\forall n \in \mathbb{N}^*) : n = 1 + (n - 1)1$: $\forall n \in \mathbb{N}^*$

 $(\forall n \epsilon \mathbb{N}^*)$; $v_n = 1 + (n-1)1$: إذن

 $(\forall n \epsilon \mathbb{N}^*)$; $v_n=n$: أي $(\forall n \epsilon \mathbb{N}^*)$; $v_n=\frac{5}{5-u_n}$: و بما أن

 $(\forall n \in \mathbb{N}^*)$; $n = \frac{5}{5 - u_n}$: فإن

 $(\forall n \in \mathbb{N}^*)$; $5n-nu_n=5$: يعني

 $(\forall n \in \mathbb{N}^*)$; $n u_n = 5n-5$: يعني

 $(\forall n \in \mathbb{N}^*)$; $u_n = 5 - \frac{5}{n}$ يعني :

EXCEL

 $\lim_{n \to \infty} (u_n) = \lim_{n \to \infty} \left(5 - \frac{5}{n} \right) = 5 - \frac{5}{\infty} = 5 - 0 = 5$

•—•(((((((1 (()))))))))))))

 $\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} (x - 2)^2 e^x = (+\infty - 2)^2 e^{+\infty}$ $= (+\infty)e^{+\infty} = (+\infty) \times (+\infty) = +\infty$

 $\lim_{x \to +\infty} \frac{f(x)}{x} = \lim_{x \to +\infty} \frac{(x-2)^2 e^x}{x} = \lim_{x \to +\infty} (x-2)^2 \left(\frac{e^x}{x}\right)$ $=(+\infty)^2\times(+\infty)=+\infty$

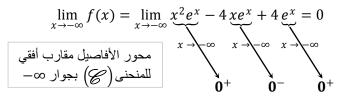
 $\lim_{x \to +\infty} f(x) = +\infty$ $\lim_{x \to +\infty} \frac{f(x)}{x} = +\infty$: نحصل إذن على النهايتين التاليتين

و من هاتين النهايتين نستنتج أن (ك) يقبل فرعا شلجميًا في اتجاه محور

الصفحة: 142 رمضان 2013 (

- . $\mathbb R$ عنصرا من χ

$$f(x) = (x-2)^{2} e^{x} = (x^{2} - 4x + 4)e^{x}$$
$$= x^{2} e^{x} - 4xe^{x} + 4e^{x}$$



 $\lim_{x \to -\infty} x^n e^x = \begin{cases} 0^+ & \text{si } n \text{ est pair} \\ 0^- & \text{si } n \text{ est impair} \end{cases}$

•—•(((((((j 3)))))))))))

 \mathbb{R} ایکن χ عنصرا من

$$f(x) = (x-2)^2 e^x$$
 : لدينا

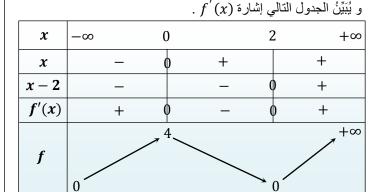
$$f'(x) = 2(x-2)e^{x} + (x-2)^{2}e^{x}$$

$$= (x-2)e^{x}(2+(x-2))$$

$$= (x-2)xe^{x}$$

 $(\forall x \in \mathbb{R})$; $f'(x) = x(x-2)e^x$: إذن

 $(\forall x \in \mathbb{R}) \; ; \; f^{'}(x) = x(x-2)e^{x} :$ لدينا $(\forall x \in \mathbb{R}) \; ; \; e^{x} > 0 \; :$ نعلم أن (x-2) تتعلق بإشارة $f^{'}(x)$ تتعلق بإشارة



إذن من خلال هذا الجدول نستنتج أن f تز ايدية على كل من المجالين $-\infty;0$ و تناقصية على المجال $-\infty;0$.

 $f^{'}(x) = x(x-2)e^{x}$: ليكن x عنصرا من x . لدينا x . x الدينا x الدينا x . x الدينا x . x الدينا x .

$$(\forall x \in \mathbb{R})$$
 ; $f''(x) = (x^2 - 2)e^x$: و بالتالي

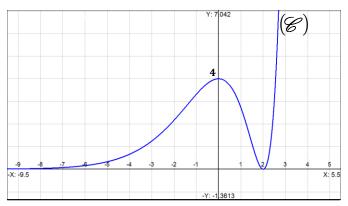
 $(orall x \epsilon \mathbb{R}) \; ; \; e^x > 0 \quad :$ و نعلم أن

إذن إشارة f''(x) تتعلق فقط بإشارة (x^2-2) و نلاحظ أن يقبل نقطتي انعطاف أفصو لاهما هما حلا المعادلة $x^2-2=0$

$$(x - \sqrt{2})(x + \sqrt{2}) = 0$$
 : يعني $x = \sqrt{2}$. $x = \sqrt{2}$.

. $\sqrt{2}$ و $\sqrt{2}$. $\sqrt{2}$ و المنحنى يقبل نقطتي انعطاف أفصو الأهما هما

•—•((((((<u>+</u> 4)))))))



 $H(x) = (x-1)e^x$: بعتبر الدالة H المعرفة على \mathbb{R} بما يلي : للحظ أن H دالة متصلة على \mathbb{R} لأنها عبارة عن تشكيلة منسجمة من الدوال المتصلة على \mathbb{R} .

$$H'(x) = ((x-2)e^x)'$$
 : و لاينا $= e^x + (x-1)e^x = xe^x = h(x)$

 \mathbb{R} الدالة h على H دالة أصلية للدالة الدالة الدال

$$\int_{0}^{1} \underbrace{x}_{u} \underbrace{e^{x}}_{v'} dx = [uv]_{0}^{1} - \int_{0}^{1} u'v \, dx = [xe^{x}]_{0}^{1} - [e^{x}]_{0}^{1}$$
$$= (e - 0) - (e - 1) = 1$$

نحسب التكامل التالي باستعمال تقنية المكاملة بالأجزاء .

$$\int_{0}^{1} \underbrace{x^{2}}_{u} \underbrace{e^{x}}_{v'} dx = [x^{2}e^{x}]_{0}^{1} - \int_{0}^{1} 2xe^{x} dx$$
$$= [x^{2}e^{x}]_{0}^{1} - 2 \int_{0}^{1} xe^{x} dx$$
$$= (e - 0) - 2 \times 1 = e - 2$$

$$\int_{0}^{1} x^{2} e^{x} dx = e - 2$$
 إذن :

وبة امتحان الدورة العادية 2013

من إعداد الأستاذ بدر الدين الفاتحي: (

) رمضان 2013

الصفحة: 143

لتكن كم مساحة الجزء من المستوى المحصور بين المنحني (ع) ومحور

الأفاصيل و المستقيمين x=0 و x=0 و الأفاصيل و المستقيمين $A=\int_0^1 |f(x)|\,dx$ نحسب A باستعمال التكامل التالي : $A=\int_0^1 |f(x)|\,dx$ نعلم أن الدالمة A تناقصية على $A=\int_0^1 |f(x)|\,dx$

إذن فهي تناقصية على المجال [0;1] .

 $f(0) \geq f(x) \geq f(1)$: فإن $0 \leq x \leq 1$

 $4 \ge f(x) \ge e \ge 0$: و منه

. [0; 1] كمية موجبة قطعا على المجال f(x):

 $\forall x \in [0;1]$; |f(x)| = f(x) : و منه

و بالرجوع إلى المساحة A نكتب :

$$\mathcal{A} = \int_0^1 |f(x)| \, dx = \int_0^1 f(x) \, dx$$

$$= \int_0^1 (x^2 e^x - 4x e^x + 4e^x) \, dx$$

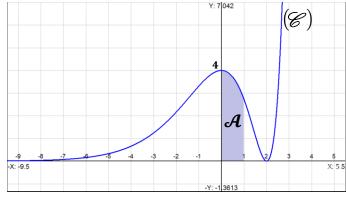
$$= \int_0^1 x^2 e^x \, dx - 4 \int_0^1 x e^x \, dx + 4 \int_0^1 e^x \, dx$$

$$= (e - 2) - 4 \times 1 + 4[e^x]_0^1$$

$$= (e - 2) - 4 + 4(e - 1) = 5e - 10$$

 $=5(e-2)\approx 3,59 \text{ cm}^2$

EXCEL



-HIIII 6)))))))))))

 $x^2 = e^{-x} + 4x - 4$: ihasil $x^2 - 4x + 4 = e^{-x}$:

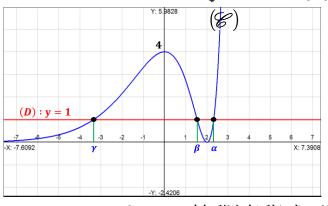
: نجد e^{-x} نجد الموجبة قطعا e^{-x} نجد

 $e^{x}(x^{2}-e^{-x}-4x+4)=0$

f(x) = 1 : يعني $x^2e^x - 4xe^x + 4e^x = 1$: يعني إذن حلول هذه المعادلة الأخيرة هي أفاصيل نقط تقاطع المنحنى () . (D): y=1 فو المعادلة (D) ذو المعادلة

و هو ما يُبَينه الشكل التالي:

أجوبة امتحان الدورة العاديـة 2013



 γ و β و α و المعادلة تقبل ثلاثة حلول و هي

من إعداد الأستاذ بدر الدين الفاتحى: () رمضان 2013

الصفحة : 144