

♦

ذ: ياسني نورالدين

سوال 1:

(نبع الحل (اتبع الحل) $AB^2=7$: $AB^2=25$: $AB^2=9$: $AB^2=9$: اتبع الحل $AB^2=7$: $AB^2=7$: اتبع الحل

(لدينا
$$B=3^2$$
 نقول إن 9 مربع كامل) $AB=3$ ومنه $AB^2=3^2$ يعني $AB^2=9$ يعني ومنه 1

(مربع كامل)
$$AB=5$$
 ومنه $AB^2=5^2$ يعني $AB^2=25$

3- لدينا $AB^2=?^2$ يعني $AB^2=?^2$ مشكلة ؟!! لا أعرف عدد مربعه 7 ؟؟ $AB^2=?^2$ يعني عني 3

ن ، فهمت ؟؟ وي، في مثل هذه الحالة لتحديد قيمة AB يكفي إضافة الرمز
$$\sqrt{C}$$
 للعدد 7 أي \sqrt{C} فهمت المحدد 3 فهمت أبي المحدد 3 أي المحدد 4 أي المحدد 3 أي المحدد 4 أي المحدد 3 أي المحدد 4 أي المحدد 4 أي المحدد 5 أي المحدد 4 أي المحدد 5 أي المحدد 4 أي المحدد 5 أ

و هذا يعني أن $7=7=\sqrt{7}$ لأن $AB^2=\left(\sqrt{7}\right)^2=7$ تعني أن $AB=\sqrt{7}$ ، العدد $AB=\sqrt{7}$ يقرأ جذر مربع $AB^2=\left(\sqrt{7}\right)^2=7$

بعدد عشري نسبي و لا جذري و إنما يسمى عدد حقيقي (اسم جديد ، كل عدد يحتوي على هذا الرمز يسمى عدد حقيقي)

.
$$x = \sqrt{15}$$
 ومنه $x^2 = (\sqrt{15})^2$ يعني $x^2 = 15$ ومنه المثلة ومنه $x = \sqrt{15}$

$$x=\sqrt{1,8}$$
 يعني $x^2=1,8$ ادينا $x=\sqrt{\frac{8}{3}}$ يعني $x^2=\frac{8}{3}$ يعني $x=\sqrt{3}$ يعني (2)- لدينا $x=\sqrt{3}$

<u>خــلاصة 1:</u> ــــــ

a عدد موجب ، لدینا : $a=\left(\sqrt{a}\right)^2$ و $\left(\sqrt{a}\right)^2=a$: عدد موجب ، لدینا $a=\left(\sqrt{a}\right)^2$

لا حظ أنه في x=a أن أس x زوجي يعنى أن x^2 موجب دائما وهذا يفرض على a أن يكون موجبا دائما لأنهما متساويان

ونعلم أن a متواجد داخل الجذر ، من هنا سنستخرج شرط مهم للجذر المربع وهو أن داخله يحتوي على أعداد موجبة فقط ؟؟جيد

ملاحظة : الكتابة $\left(\sqrt{a}\right)^2$ مثلها مثل الكتابة \sqrt{a}^2 (انتبه a: الأس فوق الجذر المربع وليس داخله كما سنرى لاحقا ، فهناك اختلاف)

امثلة:
$$8 = (\sqrt{8})^2$$
 *** $9 = \sqrt{54}^2 = 54$ *** $(\sqrt{\frac{4}{3}})^2 = \frac{4}{3}$ *** $(\sqrt{6})^2 = 6$ امثلة:

$$\sqrt{-3}^2$$
 الجذر المربع ؟!! $\sqrt{-3}^2$ فهو غير موجود $\sqrt{-3}^2$ لأن 3- عدد سالب لا يمكن وضعه داخل الجذر المربع ؟!!

سوال 2: اكتب على شكل مربع بطريقتين مختلفتين العدد 9 (ركز مع الحل 🙂)

 \odot ? ومن جهة أخرى باستعمال الجذر المربع : $(\sqrt{9})^2 = 9$ ، سهلة ، أليس كذلك ؟؟

 \bigcirc بمقارنة الطريقتين سنجد أن $= (\sqrt{9})^2 = 9$ تعني $= (\sqrt{9})^2 = 3^2$ بإزالة الأسين (2) نحصل على $= (\sqrt{9})^2 = 3^2$ ، هل فهمت $= (\sqrt{9})^2 = 3^2$

لنستمر، في العلاقة: 3=9 سنعوض 9 الموجودة داخل الجذر ب $3^2=3$ أي 3=3 (الأس داخل الجذر 4) يعني

نتيجة أخرى هي : $\sqrt{3^2} = 3$ (إزالة الأس 2 و رمز الجذر حتى وإن كان الأس داخل الجذر المربع كما رأينا في الأول $\sqrt{3^2}$

خلاصــة 2:

(a وهي a عدد موجب ، لدينا $a^2 = a$ النتيجة وهي a^2 عدد موجب ، لدينا $a^2 = a$ النتيجة وهي a عدد موجب ، لدينا a النتيجة سالبة و الجذر a الجواب : a الجواب : a النتيجة سالبة و الجذر a النتيجة سالبة و الجذر a المربع يعطي دائما نتيجة موجبة ، هل فهمت ؟ (قليلا a ، لكن ما هو الجواب الصحيح ؟) حسنا : a عنتخلص أولا من إشارة "-" لأن الأس a زوجي وبعدها نزيل الأس والجذر حسب الخلاصة ، هذا كل ما في الأمر a .

$$\sqrt{100}=10$$
 و $\sqrt{16}=\sqrt{4^2}=4$ و $\sqrt{4}=\sqrt{2^2}=2$ و $\sqrt{\left(\frac{1}{5}\right)^2}=\frac{1}{5}$ و $\sqrt{7^2}=7$ و أمثلة:

$$\sqrt{(-6)^2} = \sqrt{6^2} = 6$$
 و $\sqrt{\frac{25}{9}} = \sqrt{\left(\frac{5}{3}\right)^2} = \frac{5}{3}$ و $\sqrt{\frac{5}{9}} = \sqrt{\frac{5}{3}}$ و $\sqrt{\frac{5}{3}} = \sqrt{\frac{5}{3}}$

<u>ملاحظات :</u> a عدد موجب وغير منعدم (a > 0) ------ a عدد موجب

1- مقابل العدد \sqrt{a} هو العدد " $-\sqrt{a}$ " انتبه \triangleq : إشارة "-" توجد أمام الجذر و في الخارج وليس داخله ؟؟!!

 $\frac{1}{\sqrt{a}}$ عدد \sqrt{a} هو العدد -2

تسمية:

سبق وأن قلنا بأن كل عدد فيه الجذر المربع يسمى عدد حقيقي مثل $\sqrt{2}$ و $\sqrt{2,5}$ أعداد حقيقية ، ومع كون $\sqrt{25} = 5$ فهذا يعني أن الأعداد الصحيحة الطبيعية هي أيضا أعداد حقيقية وكذلك الأعداد العشرية النسبية والجذرية هي أعداد حقيقية

•••
$$\frac{-7}{-\sqrt{3}}$$
 ، $\frac{-\sqrt{5}}{\sqrt{6}}$ ، $\frac{\sqrt{19}}{5}$ ، $-\sqrt{5}$ ، $\sqrt{22,41}$ ، $\sqrt{19}$ ، $\frac{6,4}{-8}$ و $\frac{2}{3}$ ، 6,7 ، -3 ، 5 ، 0 أمثلة لأعداد حقيقية :

تطبيقات:

لا تقلق!! فهذه الصفحة لا تحتوي على خاصيات أخرى ، وإنما على أمثلة ستجيب عليها لنرى مدى درجة فهمك للدرس ،

لنبدأ 🙂

.
$$x=...$$
 إذن $x=5$ اينا $x=5$ عدد موجب) لدينا $x=5$ تعني $x=5$ اين $x=5$ إذن $x=5$ إذن $x=5$

$$x=...$$
 الدينا $x^2=rac{5}{3}$ الدينا $x=17$ الدينا $x=17$ الدينا $x=17$ الدينا $x=17$

$$\frac{6}{5} = \dots^2 \quad \text{if } 8 = \dots^2 \quad \text{if } \left(\sqrt{\sqrt{7}}\right)^2 = \dots \quad \text{if } \sqrt{\frac{10}{4}}^2 = \dots \quad \text{if } \sqrt{13}^2 = \dots \quad \text{if } \left(\sqrt{-6}\right)^2 = \dots \quad \text{if } \left(\sqrt{2}\right)^2 = \dots$$

??? الأسئلة سهلة باستثناء
$$\dots = \left(\sqrt{\sqrt{7}}\right)^2$$
 لم أفهم ؟!! \bigcirc الجواب سهل ، يكفي إزالة الأس 2 مع رمز الجذر المربع

الموجود في الخارج مادام أن داخله و هو "
$$\sqrt{7}$$
 " عدد موجب ، أي : $\sqrt{7}$ = $\sqrt{7}$ جيد فهمت \odot ، لننتقل إلى 2

$$\sqrt{-4} = \dots$$
 بن $\sqrt{\frac{1}{4}} = \dots$ بن $\sqrt{(-6)^2} = \dots$ بن $\sqrt{49} = \dots$ بن $\sqrt{\frac{9}{2}}^2 = \dots$ بن $\sqrt{11^2} = \dots$ عند $\sqrt{11^2} = \dots$ عند $\sqrt{11^2} = \dots$

لا مشكلة ؟!! 😁 يكفي أن نكتب العدد داخل الجذر المربع على شكل $^2(...)$ ثم نزيل الأس ² مع رمز الجذر المربع ،

لاحظ أن هناك سؤالين متشاهين " النجمتين ♦ بالأحمر " ما الفرق بينهما ؟؟؟؟ في الأول: الأس خارج الجذر كما أن هناك

عدد سالب داخل الجذر المربع إذا
$$V$$
 يمكن حسابه V عدد سالب داخل الجذر المربع إذا V يمكن حسابه V

فالأس
2
 داخل الجذر وهنا سيقوم الأس بإزالة "-" داخل الجذر فتصبح صحيحة : $\sqrt{(-6)^2} = \sqrt{6^2} = 6$

بصفة عامة (تذكير): a عدد موجب -

>>
$$\sqrt{-a}^2 = \sqrt{-a^2}$$
 علاقتين لهما نفس المعنى يعني بأقواس أو بدونها ، في هذه الحالة العلاقتين خاطئتين لأن في داخل الجذر يوجد عدد سالب و هو (a) و هذا غير ممكن 1 ?!!

$$\sqrt{(-a)^2} = \sqrt{a^2} = a \quad \text{eight} \quad \sqrt{(-a)^2} \neq -a <<$$