

المركز الوطني للتقويم والامتعانات والتوجيه

2	مدة الإنجاز	علوم الحياة والأرض	المادة
3	المعامل	شعبة العلوم الرياضية (أ)	الشعبة أو المسلك

يسمح باستعمال الآلة الحاسبة غير القابلة للبرمجة المكون الأول: استرداد المعارف (5 نقط)

ي: عرف (ي) المصطلحين الآتيين: المنوال (M) - المعدل الحسابي (\bar{X}) . (1 ن)

II- أنقل (ي) ، على ورقة تحريرك، الحرف المقابل لكل اقتراح من الاقتراحات الآتية، ثم اكتب (ي) أمامه "صحيح" أو "خطأ". (2 ن)

أ. السلالة النقية هي مجموعة أفراد متشابهة الاقتران بالنسبة للمورثات المدروسة.

ب - الجماعة غير المتجانسة هي جماعة تعطي بعد الانتقاء أكثر من سلالة نقية.

ج - يعتبر القياس الإحيائي أداة أدراسة تغير الصفات الوراثية الكمية.

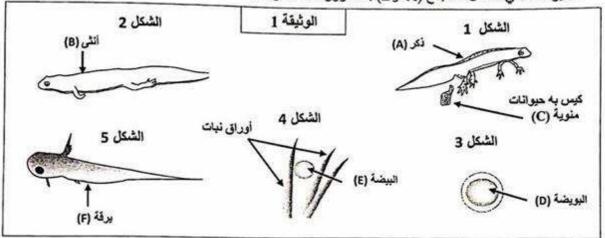
د ـ يدل منحنى التردد عديد المنوال على أن الساكنة غير متجانسة بالنسبة للصفة الوراثية المدروسة.

III- يوجد اقتراح صحيح بالنسبة لكل معطى من المعطيات المرقمة من 1 إلى 4. أنقل (ي) الأزواج الاتية على ورقة تحريرك ثم أكتب (ي) داخل كل زوج الحرف المقابل للاقتراح الصحيح. (2 ن) (1،) (2،) (4،)

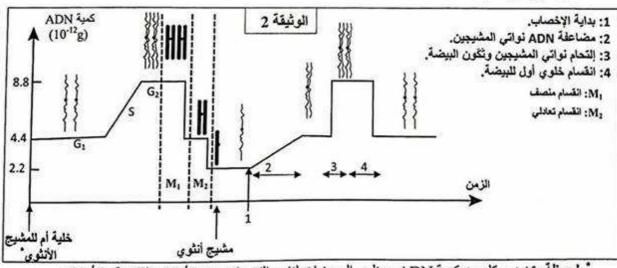
3- الانتقاء الاصطناعي:	1 - ثابتات الموضع هي:
ا ـ يكون فعالا حينما يهم الجماعات المتجانسة؛	أ - المنوال والمعدل الحسابي والمغايرة؛
ب ـ يُشكل نتيجة لتأثير الوسط على صفة وراثية معينة ؛	ب ـ المنوال والمغايرة؛
ج ـ يهدف إلى الحصول على سلالات ذات صفات مرغوب فيها؟	ج - المعدَّل الحسابي والمنوال؛
د ـ يكون فعالا حينما يهم الجماعات ذات التغير الوراثي الضعيف.	د - المعدل الحسابي والمغايرة.
4 - التغير المتواصل هو الذي:	2 - الانحراف النمطي (المعياري):
أ - تأخذ فيه المتغيرات كل قيم مجال التغير ؛	ا - يعطى فكرة عن قيمة المتغير الأكثر ترددا؛
ب. تأخذ فيه المتغيرات قيما بأعداد صحيحة طبيعية؛	ب _ يُستّعمل مع المنوال لحساب مجال الثقة؛
ج - يُمَكن من تحديد كيفية انتقال الصفات الوراثية؛	ج- يُغْتبر من ثابتات التبدد (التشتت)؛
د- يُمكن من قياس تغير الصفات الوراثية الكيفية.	د ـ يُغتبر من ثابتات الموضع.

المكوّن الثاني: الاستدلال العلمي والتواصل الكتابي والبياني (15 نقطة)

التمرين الأول: (7.5 نقط)


قصد إبراز دور تعاقب كل من الانقسام الاختزالي والإخصاب في ثبات الصيغة الصبغية وفي التنوع الوراثي عبر الأجيال، نقترح ما يلي:

I - سمندل الماء Tritinus vulgaris حيوان برماني يتوالد في المياه العذبة خلال فصل الشتاء. مكن التتبع المتواصل لهذا الحيوان من تعرف بعض مراحل دورة نموه الممثلة بأشكال الوثيقة 1.


Φ

NS 36

خلال فترة التوالد يتموضع الذكر (A) أمام الأنثى (B) ويضع، على أوراق النباتات المانية، كيسا مملوة بالحيوانات المنوية (C). تقوم الأنثى بامتصاص الكيس بواسطة فتُحَة عضوها التناسلي، ليتم تخصيب بويضاتها (D) بالحيوانات المنوية الموجودة بالكيس، ولذلك فالإخصاب داخلي عند سمندل الماء ويتم بدون تسافد (copulation) بين الجنسين. تضع الأنثى من 200 إلى 300 بيضة (E) فوق أوراق النباتات أو فوق الأحجار. بعد مرور 15 إلى 20 يوما تعطى البيضات يرقات (F) لا يتعدى قد كل واحدة منها 1cm. تنمو كل يرقة لتعطى سمندل ماء بالغ (A) أو B) بعد مرور ثلاث سنوات.

1- باقتصارك فقط على الحروف اللاتينية (F,E,D,C,B,A) المبينة بالوثيقة 1، أنجز (ي) رسما تخطيطيا يمثل دورة النمو عند هذا الحيوان. (إنجاز الرسومات المبينة بأشكال الوثيقة 1 غير مطلوب). (0.25 ن) تتميز دورة النمو عند سمندل الماء بتعاقب ظاهرتي الانقسام الاختزالي والإخصاب. تمثل الوثيقة 2 تطور كمية ADN ومظهر الصبغيات بنواة الخلية منذ بداية تشكل البويضات، انطلاقا من الخلية الأم، إلى أول انقسام خلوي للبيضة.

"ملحوظة: تخضع كل من كمية ADN ومظهر الصبغيات لنفس التغيرات عند الأمشاج الذكرية والأمشاج الأنثوية.

2- صُف (ي) تطور كمية ADN و مظهر الصبغيات قبل وخلال وبعد الإخصاب، ثم استنتج (ي) معلا (معلة) إجابتك نمط الدورة الصبغية عند هذا الحيوان. (1.75 ن)

3-انجز (ي) الدورة الصبغية لهذا الحيوان. (0.5 ن)

II- من أجل در اسة كيفية انتقال صفتي لون الجسم ولون العيون عند ذبابة الخل، نقتر ح التزاوجات الأتية:

النزاوج الأول: بين ذكور من سلالة نقية ذات عيون حمراء وإناث من سلالة نقية ذات عيون بلون توت الغليق
 (Framboise). أعطى هذا النزاوج جيلا أولا F₁ يتكون من ذكور ذات عيون بلون توت الغليق وإناث بعيون حمراء.

التزاوج الثاني: بين ذكور من سلالة نقية بجسم أسود وعيون بلون توت العُلَيْق وإناث من سلالة نقية بجسم رمادي وعيون حمراء، أعطى جيلا أو ٢-١٤ يتكون من أفراد كلها ذات جسم رمادي وعيون حمراء.

وعيون حمراء، اعطى جيد أو 1 م يعدون من الراحمة المحصل عليها من التزاوج الثاني. أعطى هذا التزاوج جيلا ثانيا • التزاوج الثاني. أعطى هذا التزاوج جيلا ثانيا • يتكون من 1000 ذبابة خل موزعة كالآتي:

. 564 ذبابة خل بجسم رمادي وعيون حمراء.

- 189 ذبابة خل بجسم أسود وعيون حمراء.

- 185 ذبابة خل بجسم رمادي وعيون بلون توت العُلْيَق.

- 62 ذبابة خل بجسم أسود وعيون بلون توت العُلَيْق.

4 - ماذا تستنتج (ين) من نتانج كل من التزاوج الأول والثاني والثالث؟ علل (ي) إجابتك. (2.75 ن)

5 - أعط (ي) التفسير الصبغي لنتائج كل من التراوجين الثاني والثالث. (2.25)

استعمل (ي) بالنسبة لصفة لون الجسم g و g وبالنسبة لصفة لون العيون R و R

التمرين الثاني: (2.5 نقط)

قصد تعرف كيفية انتقال مرض وراثي يسمى Epithélioma adénoïde، الذي يتمثل في ظهور عُقَيْدات على الوجه وأورام مختلفة القد على باقي الجسم، نقترح فيما يلي شجرة نسب عائلة بعض أفرادها مصابون بهذا المرض.

1- بالاعتماد على معطيات شجرة النسب حدد (ي) معللا (معللة) الجابتك كيفية انتقال هذا المرض. (1 ن)

ربابت ويم المسلم المسلم المسلم (10 في المسلم المسل

احتمال إبجاب خلف سليم من طرف الأبوين 117 و118. (11) استعمل (ي) E بالنسبة للحليل المتنحي

 II
 1
 2

 III
 2
 3
 4
 5
 6
 7
 8

 III
 1
 2
 3
 4
 5
 6

 III
 1
 2
 3
 4
 5
 6

 Inclination
 Inclination

التمرين الثالث : (5 نقط)

قصد إبراز كيفية تأثير بعض عوامل التغير على البنية الوراثية للساكنات الطبيعية، نقترح المعطيات الآتية: I- تعيش طيور القرمش Géospiza fortis بجزيرة Daphne Major الموجودة بأرخبيل Galápagos حيث يشكل المناخ العامل الأساسي في توفير البذور التي تتغذى عليها هذه الطيور. لهذه الأخيرة منقار متوسط القد يُمتكنها من تناول جل البذور مع تفضيل سهلة الكسر منها.

عرفت سنة 1977 ندرة التساقطات المطرية لمدة 151 يوما، الشيء الذي نتج عنه قلة البذور التي يتغذى عليها بالأساس طائر القرمش G.fortis، ولذلك اقتصر غذاؤه على البذور المتبقية بالجزيرة من الموسم السابق. بعد استهلاك البذور السهلة الكسر، لم يتبقى بالجزيرة في نهاية السنة، سوى البذور الصعبة الكسر. لإبراز تأثير الجفاف على تغير البنية الوراثية لساكنة هذه الطيور، تم تتبع تغير عدد طيور الساكنة و قد المنقار بين سنتي 1977 و1978. يمثل الجدول 1 النتائج المحصلة:

الامتحان الوطني الموحد للبكالوريا – الدورة العادية 2017 – الموضوع – مادة: علوم الحياة والأرض – شعبة العلوم الرياضية (أ)

الصلحة	
<u> </u>	NS 36
4	

قد المنقار الأكثر ترددا قد المنقار] ب mm	عدد طيور القرمش	دول 1	الجا
8.8	216	قبل فترة الجفاف	1077
10.3	36	بعد فترة الجفاف	1977
9.8	142	جيلا واحدا بعد الجفاف	1978

2- اقترح (ي) تفسيرا للتغيرات الملاحظة في الإجابة عن السؤال 1. (0.5 ن)

2- اعتماداً على معارفك وعلى المعطيات السابقة، حدد (ي) عامل التغير المدروس مبرزا (مبرزة) تأثيره على البنية الوراثية لساكنة G. fortis. و 1.25 ن)

II ـ تعيش طيور Zosterops lateralis ذات الظهر الرمادي (Dos gris) بأستراليا. ومنذ بداية القرن التاسع عشر، استوطنت مجموعة من الأفراد جزيرة تاسمانيا ثم جزر زيلاندا الجديدة جنوبا وشمالا، ثم جزيرة نورفولك. وقد بينت الدراسات أن طيور Zosterops تجد صعوبة في الطيران لمسافات طويلة، مما يسمح بالافتراض بأن عددا قليلا منها هو الذي ينتقل من جزيرة إلى أخرى ليشكل ساكنات مختلفة، وقد أثبتت الدراسات أن أفراد مختلف هذه الساكنات قادرة

على التوالد فيما بينها. تبين الوثيقة 1 منحى تنقل هذا الطائر واستيطانه للجزر.

4. هناك فرق بين مفهوم الساكنة ومفهوم النوع،
 بين (ي) ذلك من خلال استثمار المعطيات السابقة
 و معطيات الوثيقة 1. (0,75 ن)

قام مجموعة من الباحثين بدراسة ست (6) مورثات عند مختلف ساكنات طيور Zosterops. يقدم الجدول2 تغير تردد حليلين a₁ وa₂ لإحدى هذه المورثات، عند الساكنة الأصلية باستراليا والساكنات الناتجة عن مختلف التنقلات من جزيرة إلى أخرى.

ساكنة جزيرة نورفولك	ساكنة جزر زيلاندا الجديدة	ساكنة جزيرة تاسمانيا	ساكنة أسترايا	الجدول 2
1	1	0,875	0,75	9. 11. 1
0	0	0,125	0,25	تريد الحليل a ₁
			1,000	تردد الحليل A ₂

5 - باعتمادك على ما سبق وعلى معطيات الجدول 2:

أ- صف (ي) تغير ترددات الحليلين a₂ و a₂ في الساكنات الأربعة. (0.5 ن)

ب- اقترح (ي) تفسيرا لهذا التغير في الساكنات الأربعة. (1.5 ن)

_____ انتهى ___

الصفحة 1

الامتحان الوطني الموحد للبكالوريا

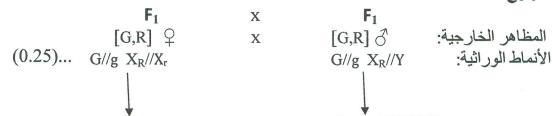
الدورة العادية 2017

- عناصر الإجابة -

المركز الوطني للتقويم والاعتدادات والتوجيه

2	مدة الإنجاز	علوم الحياة والأرض	المادة
3	المعامل	شعبةالعلوم الرياضية (أ)	الشعبة أو المسلك

NR 36


المكون الأول: استرداد المعارف (5 نقط)				
سلم التنقيط	عناصر الإجابة	رقم السؤال		
1ن	- تعريف صحيح من قبيل: المنوال هو قيمة المتغير أو قيمة الفئة الأكثر ترددا	I		
2 ن	(أ؛ صحيح) - (ب؛ صحيح) - (ج؛ صحيح)	II		
2ن	(1:4) - (z:3) - (z:1)	III		

المكون الثاني: الاستدلال العلمي والتواصل الكتابي والبياني (15 نقطة)					
	التمرين الأول: (7.5 نقطة)				
سلم التنقيط	عناصر الإجابة	رقم السؤال			
0.25 ن	دورة نمو سمندل الماء: قبول كل دورة نمو صحيحة E E	1-I			
	- قبل الإخصاب: في الفترة G ₁ تتميز نواة الخلية الأم للمشيج الأنثوي بكمية Q ₁ بكمية (0.25)	2-I			

8	•	لوحد للبكالوريا - الدورة العادية 017 وم الحياة والأرض – شعبة العلوم		الصفحة 2 4
	التعليل: يقتصر الطور الاختزالي	ر (n) على الأمشاج فقط لأن الإخصا	ب يتم مباشرة بعد الانقسام	ن 1.75
3 -I	- الدورة الصبغية عنا طور ثناني اله المسلمة عنائي اله المسلمة المسلمة عنائية المسلمة ا	صيغة الصبغية صيغة الصبغية	انثی نکر الی الم	0. 5
4 -II	المورثة المندل؛ الأبوان من الماندل؛	لهم مظهر خارجي شبيه بأحد الأبوير عيون يمكن تحديد نوع السيادة أيضا لتان مستقلتان. عن لون الجسم محمولة على صبغي لا ية بنسب: 9/16 و 3/16 و 3/16 و 3/16	متجانس. عدم تحقق القانون الأوا	2.75 ن
5 - II	التزاوج الثاني: المظاهر الخارجية: الأنماط الوراثية: الأمشاج: شبكة التزاوج:		[G,R] $\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	

الأمشاج ألمشاج الأمشاج بالأمشاج بالأمشاج بالمشاج	g X _r 1/2	g Y 1/2
<u>G</u> X _R	G//g X _R //X _r	G//g X _R //Y
100%	1/2 [G,R] ♀	1/2 [G,R] ♂

(ن 0. التزاوج الثالث:

($\dot{0}$ 0.25). 25% 25% 25% 25%

الأمشاج: $G X_R$; $g X_R$; $G X_r$; $g X_r$ $G X_R$; $g X_R$; G Y; g Y $G X_R$; G Y; g Y $G X_R$; G Y; G Y; G Y $G X_R$; G Y; G Y

(5.0 ن)	• • • • • • • • • • • • • • • • • • • •			شبكة التزاوج:
الأمشاج كالأمشاج ع	<u>G</u> X _R	g X _R	<u>G</u> Y	g Y
	1/4	1/4	1/4	1/4
<u>G</u> X _R	G//G X _R //X _R	♀ G//g X _R //X _R	G//G X _R //Y	G//g X _R //Y
1/4	1/16 [G,R]♀	1/16 [G,R]	1/16 [G,R]♂	1/16 [G,R] \eth
g X _R	♀ G//g X _R //X _R	g//g X _R //X _R	G//g X _R //Y	g//g X _R //Y
1/4	1/16 [G,R]	1/16 [g, R] ♀	1/16 [G,R] &	1/16 [g, R] \circlearrowleft
<u>G</u> X _r	$ \begin{array}{c c} & G//G X_R//X_r \\ & 1/16 [G,R] \end{array} $	♀ G//g X _R //X _r	G//G X _r //Y	G//g X₁//Y
1/4		1/16 [G,R]	1/16 [G, r] ♂	1/16 [G, r] ♂
g X _r	$ \begin{array}{c} \lozenge G//g X_R//X_r \\ 1/16 [G,R] \end{array} $	g//g X_R // X_r	G//g X _r //Y	g//g X _r //Y
1/4		1/16 [g, R] $\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	1/16 [G, r] ♂	1/16 [g, r] d

النتائج النظرية الممكن الحصول عليها عند أفراد الجيل R2

1/16 [g,r] -

ن 2.25

1ن

3/16 [G, r]-

3/16 [g, R] -

9/16 [G,R] -النتائج التجريبية:

2

16=0.189 = 189/1000 : [g, R] - 9/16=0.56 = 564/1000 : [G, R] - 1/16=0.062 = 62/1000 : [g, r] - 3/16=0.185 = 185/1000 : [G, r] -3/16=0.189 =189/1000 :[g, R] -

النتائج النظرية تطابق النتائج التجريبية، إذن فالتفسير الصبغى المقترح صحيح. (0.25 ن)

التمرين الثاني (2.5 نقطة) -أبوان مصابان (I2 و I2) أنجبا خلفا سليما (قبول كل تعليل أخر صحيح): الحليل المسؤول عن ($\dot{0}$ 0.25) 1 بما أن المرض سائد والأب ${
m I}_2$ مصاب وأنجب إناثا سليمات: المورثة غير محمولة على الصبغى - بما - المورثة المدروسة محمولة على صبغي لا جنسي (غير مرتبطة بالجنس)...... (0.25 ن)

أ- الأنماط الوراثية الممكنة عند الأنثى ${
m II}_8$ هي: ${
m E//e}$ أو ${
m E//e}$ ب - لكي تنجب الأنثى II₈ خلفا سليما ينبغي أن تكون مختلفة الاقتران. حساب احتمال أن تكون هذه الأنثى مختلفة الاقتران: - بما أن أبوي الأنثى II₈ مختلفى الاقتران فنمطهما الوراثى هو: E//e

الأمشاح الممكنة: 9 ½ £ ½ و e 9 ½ £ ½ و المبكنة التزاوح شبكة التزاوح بالا الممكنة التزاوح بالا المبكنة التزاوح بالا و المبكنة بالمبكنة	7		ماده؛ عنوم احياه وافرض - سعبه العنوم الرياضية (١)					
شبكة التزاوج (ن 0.25) 4 1 1 1 1 1 1 1 1 1			الأمشاج الممكنة: E: ½ e و ½ E: ½ e الأمشاج الممكنة					
(ن 0.25)			شبكة التزاوج	= 1				
(ن 0.25)								
(0.25) (1.25) (2.00) (
المنافق المنافق المنافق المنافق المنافق الاقتران هو: 3/ 2 المنافق			½ E ¼ E//E [E] ¼ E//e [E]					
المتمال أن تكون هذه الأنثي مختلفة الإقتران هو: 3/2			½ e ½E//e [E] ¼ e//e [e]					
حساب احتمال إنجاب خلف سليم من الزوج ١١٦ و ١١٤ الأمثاج: / الأب ١٦ سليم متشابه الإقتران، ينتج نوعا واحدا من الأمشاج: / الشبكة التزاوج:			(0.25)					
- الأب السليم متشابه الاقتران، ينتج نوعاً واحدا من الأمشاح: / مسكة التزاوج:			احتمال ان تكون هذه الأنثى مختلفة الاقتران هو: 3/ 2					
المسكة التزاوج: المسكة التراوج: المسكة التراوج الله و المسكة التراوج الله و الله التراوج الله و الله الله المسكة الله الله الله الله المسكة المسكة الكسر ما التعرين الثالث: (2.5 شط) المسكة الكسر المسكة الكسر ما 1.5 المسكة الكسر المسكة الكسر المسكة الكسر وبالتالي انخفاض عدد الطيور من 1.5 إلى 3.6 و ارتفاع قد المنقار الأكثر ترددا من المسكة الكسر وبالتالي انخفاض عدد الطيور ذات المنقار الصغير غير المسكة الكسر وبالتالي انخفاض عدد الطيور ذات المنقار الصغير غير المسكة الكسر المغاف وبقيت حية، مما التعرب عنى المسكة الكسر المغاف وبقيت حية، مما التعرب عنه المنافز المنافز الكبير (من 2.5 المنقار الكبير (من 8.8 mm) الموالي نتج عنه ارتفاع عدد الطيور ذات المنقار الكبير (من 8.8 mm) الموالي نتج عنه ارتفاع عدد الطيور ذات المنقار المسكنات المتراليا إلى جزر و المنافز المبيانية الموالي و الموالي الموالي و الموالي الموالي و ال								
1.5 احتمال البجاب خلف سليم من الزوج ١١٦ و الاوج ١١٥ التمرين الثالث: (2/3 x 1/2 = 1/3 التمرين الثالث: (5 نقط) 1/2 e/e [e] 1/2				1				
1-1 1/2								
1-1 1/2 e/e [e] 1/3 e/e [e] 1/3 e/e [e] 1/4 e/e [e] 1/4 e/e [e] 1/4 e/e [e] 1/5 e/e		1.5 ن						
القمرين الثالث: (5 نقط) بعد فترة الجفاف: انخفاض عدد الطيور من 216 إلى 36 و ارتفاع قد المنقار الأكثر ترددا من 1-1 بعد فقرة الجفاف: انخفاض عدد الطيور من 216 إلى 36 و ارتفاع قد المنقار الصغير غير - أدى الجفاف إلى ندرة البنور السهلة الكسر مما نتج عنه موت الطيور داخل المنقار الصغير غير القادرة على استهلاك البنور الصبعة الكسر وبالتالي انخفاض عدد الطيور داخل الساكنة(20.0 ن) - تحملت الطيور ذات المنقار القادر على استهلاك البنور الصعبة الكسر الجفاف ويقيت حية، مما نتج عنه ارتفاع عدد الطيور ذات المنقار الكبير (10.3 mm) 10.0 فتمكنت من نقل حليلاتها بشكل تفاضلي للجيل الموالي نتج عنه ارتفاع عدد الطيور ذات المنقار الكبير (من 8.8 mm) 10.0 فتمكنت من نقل حليلاتها بشكل تفاضلي للجيل الموالي نتج عنه ارتفاع عدد الطيور ذات المنقار الكبير (10.2 mm) 10.0 فتمكنت من نقل حليلاتها بشكل تفاضلي للجيل الموالي نتج عنه ارتفاع عدد الطيور ذات المنقار (10.2 في التعلق الأمر بعامل الانتقاء الطبيعي 10.0 في 10.0 ف			117					
1-1 1-2 1-3			100% e 1/2 E//e [E] 1/2 e//e [e]					
1-1 10.3 10.5								
- أدى الجفاف إلى 10.3mm المنقار السهلة الكسر مما نتج عنه موت الطيور ذات المنقار الصغير غير القادرة على استهلاك البذور السهلة الكسر مما نتج عنه موت الطيور داخل الساكنة (20.0 نتج عنه استهلاك البذور الصعبة الكسر وبالتالي انخفاض عدد الطيور داخل الساكنة (20.0 نتج عنه ارتفاع عدد الطيور ذات المنقار الكبير (10.0 نتج عنه ارتفاع عدد الطيور ذات المنقار الكبير (10.0 نتج عنه ارتفاع عدد الطيور ذات المنقار الكبير الكبير (10.3 mm) التي توالدت فيما بينها الكبير (من mm) الكبير (من 8.8mm) الكبير (من 8.0 ألم الموالي نتج عنه ارتفاع عدد الطيور ذات المنقار (10) التي توالدت فيما بينها البيناء الطبيعي (20.0 نام الكنات أستر اليا والجزر الأخرى قادرة على التوالد فيما بينها. إذن فهي تنتمي لنفس النوع				1-I				
القادرة على استهلاك البذور الصعبة الكسر وبالتالي الخفاض عدد الطيور داخل الساكنة(20.0 ن) - تحملت الطيور ذات المنقار القادر على استهلاك البذور الصعبة الكسر الجفاف وبقيت حية، مما انتج عنه ارتفاع عدد الطيور ذات المنقار الكبير	L	0.5 ن						
- تحملت الطيور ذات المنقار القادر على استهلاك البنور الصعبة الكسر الجفاف وبقيت حيه، مما نتج عنه ارتفاع عدد الطيور ذات المنقار الكبير								
نتج عنه ارتفاع عدد الطيور ذات المنقار الكبير (10.3 mm) التي توالدت فيما بينها ولقمكنت من نقل حليلاتها بشكل تفاضلي للجيل الموالي نتج عنه ارتفاع عدد الطيور ذات المنقار الكبير (من 8.8mm) الموالي نتج عنه ارتفاع عدد الطيور ذات المنقار (10.3 الكبير (من 8.8mm) مقارنة مع فترة ما قبل الجفاف	-			2-I				
- بعد فترة الجفاف، تم تفضيل الطيور ذات المنقار الكبير (10.3 mm) التي توالدت فيما بينها فتمكنت من نقل حليلاتها بشكل تفاضلي للجيل الموالي نتج عنه ارتفاع عدد الطيور ذات المنقار (10.3 الكبير (من 8.8 mm) الكبير (من 8.8 mm) مقارنة مع فترة ما قبل الجفاف		. 0. 5						
الكبير (من 8.8mm إلى 1.25 مقارنة مع فترة ما قبل الموالي نتج عنه ارتفاع عدد الطيور ذات المنقار (10) (10) الكبير (من 8.8mm إلى 1.26 مع فترة ما قبل الجفاف	-	0.5 ن						
الكبير (من 8.8mm إلى 1.25 (من 9.8mm) مقارنة مع فترة ما قبل الجفاف								
يتعلق الأمر بعامل الانتقاء الطبيعي				3-I				
لا النوع عدة ساكنات أستراليا والجزر الأخرى قادرة على التوالد فيما بينها. إذن فهي تنتمي لنفس النوع (0.25)		÷1 25	har the first har first ha					
- كل ساكنة من هذه الساكنات توجد داخل مجال جغرافي معين ولها محتوى جيني معين. إذن يشمل النوع عدة ساكنات قادرة على التوالد فيما بينها النوع عدة ساكنات قادرة على التوالد فيما بينها الوائققال من أستراليا إلى جزر زيلاندا الجديدة نلاحظ ارتفاعا في تردد الحليل 1 من 0.75 إلى الوائنقال من جزر زيلاندا الجديدة إلى جزيرة نورفولك نلاحظ استقرار تردد الحليل 1 هي ويائنيقال من جزر زيلاندا الجديدة إلى جزيرة نورفولك نلاحظ استقرار تردد الحليل 1 هي هي القيمة (اقصاء الحليل 1 هي هي القيمة (اقصاء الحليل 2 هي التغير بتاثير عوامل التغير على البنية الوراثية الساكنات هذا النوع: المهان طيور zosterops تتميز بعدم قدرتها على الطيران لمسافات طويلة، فإن عددا قليلا منها المهو الذي ينتقل من جزيرة إلى أخرى، ومن تم فإن مختلف الساكنات التي استوطنت الجزر توجد بأعداد قليلة وبالتالي ضياع التوع الوراثي (تثبيت الحليل 1 هي وإقصاء الحليل 2 هي):يتعلق الأمر بالمفعول المؤسس/ الانحراف الجيني (تثبيت الحليل 1 هي وإقصاء الحليل 2 هي) (1.5 في المنور 1.5 في الجيني	-	0 1.23						
4^{-11} كل ساكنة من هذه الساكنات توجد داخل مجال جغرافي معين ولها محتوى جيني معين. إذن يشمل النوع عدة ساكنات قادرة على التوالد فيما بينها 0.75 ألى 0.75 ألى النتقال من أستر اليا إلى جزر زيلاندا الجديدة نلاحظ ارتفاعا في تردد الحليل 0.75 إلى 0.75 الى 0.75 الى 0.75 الى 0.75 الى 0.75 الى 0.75 الى 0.75 المنتقال من جزر زيلاندا الجديدة إلى جزيرة نور فولك نلاحظ استقرار تردد الحليل 0.75 ألى 0.75 القيمة 0.75 (أقصاء الحليل 0.75 ألى 0.75 ألى ألى التغير عامل التغير على البنية الوراثية الساكنات هذا النوع: 0.75 أن طيور 0.75 أن المنتور بعدم قدر تها على الطير ان لمسافات طويلة، فإن عددا قليلا منها أن طيور 0.75 المنتورة إلى أخرى، ومن تم فإن مختلف الساكنات التي استوطنت الجزر توجد بأعداد قليلة وبالتالي ضياع التنوع الوراثي (تثبيت الحليل 0.75 ألى المنعول المؤسس/ الانحراف الجيني. 0.75				/ TT				
أ- بالانتقال من أستراليا إلى جزر زيلاندا الجديدة نلاحظ ارتفاعا في تردد الحليل a_1 من a_2 0.0 إلى 1وانخفاضا في تردد الحليل a_2 0.2 من a_3 0.0 إلى 0. بالانتقال من جزر زيلاندا الجديدة إلى جزيرة نور فولك نلاحظ استقرار تردد الحليل a_1 في القيمة a_1 (أقصاء الحليل a_2 0.) (a_2 0.0 القيمة a_3 1 القيمة الحليل a_4 2 واستقرار تردد الحليل a_4 3 في القيمة a_4 4 (أقصاء الحليل a_4 5 (a_5 6 أن عدا التغير عوامل التغير على البنية الوراثية لساكنات هذا النوع: - بما أن طيور zosterops تتميز بعدم قدرتها على الطيران لمسافات طويلة، فإن عددا قليلا منها من جزيرة إلى أخرى، ومن تم فإن مختلف الساكنات التي استوطنت الجزر توجد بأعداد قليلة وبالتالي ضياع التنوع الوراثي (تثبيت الحليل a_4 6 و إقصاء الحليل a_5 6.1 ن 1.5)			- كل ساكنة من هذه الساكنات توجد داخل مجال جغرافي معين ولها محتوى جيني معين. إذن يشمل	4-11				
او انخفاضا في تردد الحليل a_2 من 0.25 إلى 0. وانخفاضا في تردد الحليل a_1 من 2.0 إلى 0. والانتقال من جزر زيلاندا الجديدة إلى جزيرة نور فولك نلاحظ استقرار تردد الحليل a_1 القيمة a_1 (اقصاء الحليل a_2 القيمة a_3 (اقصاء الحليل a_4 واستقرار تردد الحليل a_5 في القيمة a_5 (اقصاء الحليل a_5) (0.25) a_5		0.75 ن	النوع عدة ساكنات قادرة على التوالد فيما بينها					
بالانتقال من جزر زيلاندا الجديدة إلى جزيرة نورفولك نلاحظ استقرار تردد الحليل a_1 في القيمة a_1 (اقيمة a_2 (اقيمة a_1 (اقيمة a_2 (اقيمة a_2 (اقيمة a_3 (اقيمة a_4 (اقيمة a_5 (اقيمة								
القيمة a_1 (تثبيت الحليل a_1) واستقرار تردد الحليل a_2 في القيمة a_2 (إقصاء الحليل a_1) (2000) a_1 بيكن تفسير هذا التغير بتاثير عوامل التغير على البنية الوراثية لساكنات هذا النوع: - بما أن طيور zosterops تتميز بعدم قدرتها على الطيران لمسافات طويلة، فإن عددا قليلا منها هو الذي ينتقل من جزيرة إلى أخرى، ومن تم فإن مختلف الساكنات التي استوطنت الجزر توجد بأعداد قليلة وبالتالي ضياع التنوع الوراثي (تثبيت الحليل a_1): يتعلق الأمر بالمفعول المؤسس/ الانحراف الجيني	-		The second of th					
-1 - يمكن تفسير هذا التغير بتاثير عوامل التغير على البنية الوراثية لساكنات هذا النوع: ما أن طيور zosterops تتميز بعدم قدرتها على الطيران لمسافات طويلة، فإن عددا قليلا منها هو الذي ينتقل من جزيرة إلى أخرى، ومن تم فإن مختلف الساكنات التي استوطنت الجزر توجد بأعداد قليلة وبالتالي ضياع التنوع الوراثي (تثبيت الحليل a_1 وإقصاء الحليل a_2): يتعلق الأمر بالمفعول المؤسس/ الانحراف الجيني	-	. ^ =						
- بما ان طيور zosterops تتميز بعدم قدرتها على الطيران لمسافات طويلة، فإن عددا قليلا منها هو الذي ينتقل من جزيرة إلى أخرى، ومن تم فإن مختلف الساكنات التي استوطنت الجزر توجد بأعداد قليلة وبالتالي ضياع التنوع الوراثي (تثبيت الحليل a ₁ وإقصاء الحليل (a ₂): يتعلق الأمر بالمفعول المؤسس/ الانحراف الجيني	-	0.5 ن		5-11				
هو الذي ينتقل من تجزيرة إلى أخرى، ومن تم فإن مختلف الساكنات التي آستوطنت الجزر توجد بأعداد قليلة وبالتالي ضياع التنوع الوراثي (تثبيت الحليل a_1 وإقصاء الحليل a_2): يتعلق الأمر بالمفعول المؤسس/ الانحراف الجيني			- بما أن طيور zosterops تتميز بعدم قدرتها على الطير أن لمسافات طويلة، فإن عددا قليلا منها					
ا بالمفعول المؤسس/ الانحراف الجيني			هُو الذي ينتقل من جزيرة إلى أخرى، ومن تم فإن مختلف الساكنات التي استوطنت الجزر توجد					
The state of the s	-		باعداد قليلة وبالنائي صياح اللوع الورائي (تنبيت الحليل a ₁ وإقصاء الحليل (a ₂):يبعلق الامر بالمفعول المؤسس/ الانحر اف الجيني.					
	1	1.5ن						